【题目】计算
(1)(﹣5.3)+(3.2)﹣(﹣2.5)﹣(+4.8)
(2)﹣2÷(﹣2
)×(﹣4.5)
(3)﹣24×(
)
(4)﹣22﹣(﹣
)3×8﹣4÷(﹣
)2.
参考答案:
【答案】(1)-4.4;(2)-4;(3)-12;(4)-12.
【解析】
(1)先写成代数和的形式,将同号的数相加后再进行加法运算即可;
(2)将除法转换为乘法后运用乘法法则进行计算即可;
(3)利用分配律进行计算即可;
(4)先进行乘方运算,然后再进行乘除运算,最后进行加减运算即可.
(1)原式=﹣5.3+3.2+2.5﹣4.8=﹣10.1+5.7=﹣4.4;
(2)原式=﹣2×(﹣
)×(﹣
)=﹣4;
(3)原式=﹣18+20﹣14=﹣12;
(4)原式=﹣4﹣(﹣
)×8﹣4×![]()
=﹣4+1﹣9
=﹣12.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在开展“好书伴我成长”的读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:

(1)求这50个样本数据的平均救,众数和中位数.
(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,D是边AC上一点,连BD,给出下列条件:①∠ABD=∠ACB;②AB2=ADAC;③ADBC=ABBD;④ABBC=ACBD.其中单独能够判定△ABC∽△ADB的个数是( )

A.①②
B.①②③
C.①②④
D.①②③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.
(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;
(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】a、b、c三个数在数轴上位置如图所示,且|a|=|b|
(1)求出a、b、c各数的绝对值;
(2)比较a,﹣a、﹣c的大小;
(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.

-
科目: 来源: 题型:
查看答案和解析>>【题目】问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S矩形ABCD.(S表示面积)
实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.
如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+
.如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与
之间的数量关系,并说明理由.迁移应用:
请直接应用“实验探究”中发现的结论解答下列问题:
如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF=
,求EG的长.
相关试题