【题目】已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求证:无论m取何值时,方程恒有实数根;
(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.
参考答案:
【答案】
(1)解:①当m=0时,原方程可化为x﹣2=0,解得x=2;
②当m≠0时,方程为一元二次方程,
△=[﹣(3m﹣1)]2﹣4m(2m﹣2)
=m2+2m+1
=(m+1)2≥0,故方程有两个实数根;
故无论m为何值,方程恒有实数根
(2)解:∵二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2,
∴
=2,
整理得,3m2﹣2m﹣1=0,
解得m1=1,m2=﹣
.
则函数解析式为y=x2﹣2x或y=﹣
x2+2x﹣ ![]()
【解析】(1)分两种情况讨论:①当m=0时,方程为一元一次方程,若能求出解,则方程有实数根;②当m≠0时,方程为一元二次方程,计算出△的值为非负数,可知方程有实数根.(2)根据二次函数与x轴的交点间的距离公式,求出m的值,从而得到抛物线的解析式.
【考点精析】本题主要考查了求根公式和抛物线与坐标轴的交点的相关知识点,需要掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,一次函数
的图象与正比例函数
的图象交于点A(m,4).(1)求m、n的值;
(2)设一次函数
的图象与x轴交于点B,求△AOB的面积;(3)直接写出使函数
的值小于函数
的值的自变量x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(﹣4,0)、C(0,3)两点.

(1)写出方程ax2+bx+c=0的解;
(2)若ax2+bx+c>mx+n,写出x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,四边形ABCD是正方形,AB=4,点G在BC边上,BG=3,DE⊥AG于点E,BF⊥AG于点F.
(1)求BF和DE的长;
(2)如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠BAC=90°,AB=AC,D是BC上的点.求证:BD2+CD2=2AD2 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:抛物线y=x2+(b﹣1)x﹣5.
(1)写出抛物线的开口方向和它与y轴交点的坐标;
(2)若抛物线的对称轴为直线x=1,求b的值,并画出抛物线的草图(不必列表);
(3)如图,若b>3,过抛物线上一点P(﹣1,c)作直线PA⊥y轴,垂足为A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数解析式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将线段AB绕点A逆时针旋转60°得AC,连接BC,作△ABC的外接圆⊙O,点P为劣弧
上的一个动点,弦AB,CP相交于点D. 
(1)求∠APB的大小;
(2)当点P运动到何处时,PD⊥AB?并求此时CD:CP的值;
(3)在点P运动过程中,比较PC与AP+PB的大小关系,并对结论给予证明.
相关试题