【题目】某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.
(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t(件)的函数关系式.
(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.
参考答案:
【答案】
(1)解:设购买的文化衫t件,则购买相册(45﹣t)件,
根据题意得:W=28t+20×(45﹣t)=8t+900.
(2)解:根据题意得:
,
解得:30≤t≤32,
∴有三种购买方案:方案一:购买30件文化衫、15本相册;方案二:购买31件文化衫、14本相册;方案三:购买32件文化衫、13本相册.
∵W=8t+900中W随x的增大而增大,
∴当t=30时,W取最小值,此时用于拍照的费用最多,
∴为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.
【解析】(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据总价=单价×数量,即可得出W关于t的函数关系式;(2)由购买纪念品的总价范围,即可得出关于t的一元一次不等式组,解之即可得出t值,从而得出各购买方案,再根据一次函数的性质即可得出W的最小值,选取该方案即可.
【考点精析】通过灵活运用一元一次不等式组的应用,掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是正方形,E、F分别是了AB、AD上的一点,且BF⊥CE,垂足为G,求证:AF=BE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b的图象与反比例函数y=
的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6, 
(1)求函数y=
和y=kx+b的解析式.
(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=
的图象上一点P,使得S△POC=9. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校为提高学生身体素质,决定开展足球、篮球、台球、乒乓球四项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图.请根据统计图回答下列问题.(要求写出简要的解答过程)

(1)这次活动一共调查了多少名学生?
(2)补全条形统计图.
(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,线段AB、CD分别表示甲乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米

(1)求甲、乙两建筑物之间的距离AD.
(2)求乙建筑物的高CD. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D

(1)求证:直线AE是⊙O的切线.
(2)若∠BAC=30°,BC=4,cos∠BAD=
,CF=
,求BF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1

(1)求此抛物线的解析式以及点B的坐标.
(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPN为矩形.
②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
相关试题