【题目】如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1![]()
(1)求此抛物线的解析式以及点B的坐标.
(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPN为矩形.
②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
参考答案:
【答案】
(1)
解:
∵抛物线y=﹣x2+bx+c对称轴是直线x=1,
∴﹣
=1,解得b=2,
∵抛物线过A(0,3),
∴c=3,
∴抛物线解析式为y=﹣x2+2x+3,
令y=0可得﹣x2+2x+3=0,解得x=﹣1或x=3,
∴B点坐标为(3,0);
(2)
①由题意可知ON=3t,OM=2t,
∵P在抛物线上,
∴P(2t,﹣4t2+4t+3),
∵四边形OMPN为矩形,
∴ON=PM,
∴3t=﹣4t2+4t+3,解得t=1或t=﹣
(舍去),
∴当t的值为1时,四边形OMPN为矩形;
②∵A(0,3),B(3,0),
∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,
∴当t>0时,OQ≠OB,
∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,
由题意可知OM=2t,
∴Q(2t,﹣2t+3),
∴OQ=
=
,BQ=
=
|2t﹣3|,
又由题意可知0<t<1,
当OB=QB时,则有
|2t﹣3|=3,解得t=
(舍去)或t=
;
当OQ=BQ时,则有
=
|2t﹣3|,解得t=
;
综上可知当t的值为
或
时,△BOQ为等腰三角形.
【解析】(1)由对称轴公式可求得b,由A点坐标可求得c,则可求得抛物线解析式;再令y=0可求得B点坐标;(2)①用t可表示出ON和OM,则可表示出P点坐标,即可表示出PM的长,由矩形的性质可得ON=PM,可得到关于t的方程,可求得t的值;②由题意可知OB=OA,故当△BOQ为等腰三角形时,只能有OB=BQ或OQ=BQ,用t可表示出Q点的坐标,则可表示出OQ和BQ的长,分别得到关于t的方程,可求得t的值.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.
(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t(件)的函数关系式.
(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,线段AB、CD分别表示甲乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米

(1)求甲、乙两建筑物之间的距离AD.
(2)求乙建筑物的高CD. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D

(1)求证:直线AE是⊙O的切线.
(2)若∠BAC=30°,BC=4,cos∠BAD=
,CF=
,求BF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A,B,C,D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是( )

A.本次抽样测试的学生人数是40
B.在图1中,∠α的度数是126°
C.该校九年级有学生500名,估计D级的人数为80
D.从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为( )

A.18
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
x
﹣1
0
1
3
y
﹣3
1
3
1
下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
相关试题