【题目】三角形纸片ABC中,∠C=90°,AC=1,BC=2.按图①的方式在这张纸片中剪去一个尽可能大的正方形,称为第1次剪取,记余下的两个三角形面积和为S1;按图②的方式在余下的Rt△ADF和Rt△BDE中,分别剪去尽可能大的正方形,称为第2次剪取,记余下的两个三角形面积和为S2;继续操作下去…….
(1)如图①,求
和S1的值;
(2)第n次剪取后,余下的所有三角形面积之和Sn为________.
![]()
参考答案:
【答案】(1)
,
;(2)
.
【解析】【试题分析】(1)设CE的长为x,由题意得,AF=1-x,FD=x,由于DF∥BC,根据平行线分线段成比例定理的推论得,ADF∽ABC,根据相似三角形的对应边成比例,得
=
,即
,解方程得x=
,则
,则S1=
×1×2-
=
(2)第一个图形中,S1=
,即S1是
的
;第二个图形中,S2是
和
的\和的
,即S2=
,…则Sn=![]()
【试题解析】
(1)设CE的长为x,由题意得,AF=1-x,FD=x,
∵DF∥BC,∴ADF∽ABC,
∴
=
,即
,解得x=
,
则
则S1=
×1×2-
=
(2)第一个图形中,S1=
,即S1是
的
;第二个图形中,S2是
和
的\和的
,即S2=
,…,以此类推,则Sn=![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.
运用上述知识,解决下列问题:
(1)如果(a-2)
+b+3=0,其中a、b为有理数,那么a= ,b= ;(2)如果(2+
)a-(1-
)b=5,其中a、b为有理数,求a+2b的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.

请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了多少名同学;
(2)条形统计图中,m,n的值;
(3)扇形统计图中,求出艺术类读物所在扇形的圆心角的度数;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校应购买其他类读物多少册?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点P.
(1)以A点为位似中心,将△ABC在网格中放大成△AB1C1,使
=2,请画出△AB1C1;(2)以P点为三角形的一个顶点,请画一个格点△PMN,使△PMN∽△ABC,且相似比为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).
(1)求直线AB的表达式;
(2)若直线AB上有一动点C,且
,求点C的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调査,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元
(1)求甲、乙两种机器每台各多少万元?
(2)如果工厂期买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?
(3)在(2)的条件下,如果要求该工厂购进的6台机器的日产量能力不能低于380个,那么为了节约资金.应该选择哪种方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
的图象与反比例函数
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交
轴、
轴于点C、D,且S△PBD=4,
.
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当
时,一次函数的值大于反比例函数的值的
的取值范围.
相关试题