【题目】如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.
(1)求证:四边形ABCD是平行四边形;
(2)若点E是AC的中点,判断BE与AC的位置关系,并说明理由;
(3)若△ABE是等边三角形,AD=
,求对角线AC的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)BE⊥AC;(3)
.
【解析】
试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD∥BC,根据平行四边形的判定推出即可;
(2)求出AD=DC,根据菱形的判定得出四边形ABCD是菱形,根据等腰三角形的性质得出即可;
(3)根据等边三角形的性质得出AB=AE,∠BAC=60°,求出∠DCE=∠BAE=60°,求出CD=2EC,设CE=x,则AB=DC=AE=2x,根据勾股定理得出方程,求出x,即可得出答案.
试题解析:(1)证明:∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形;
(2)解:BE⊥AC,理由是:∵DE⊥AC,E为AC的中点,∴AD=DC,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形,∴AB=BC,∵E为AC的中点,∴BE⊥AC;
(3)解:∵△ABE是等边三角形,∴AB=AE,∠BAC=60°,∵AB∥DC,∴∠DCE=∠BAE=60°,∵∠DEC=90°,∴∠CDE=30°,∴CD=2EC,设CE=x,则AB=DC=AE=2x,由勾股定理得:DE2=AD2﹣AE2=DC2﹣CE2,即
,解得:x=
(负数舍去),即CE=
,AE=
,∴AC=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图四边形AOBC为正方形,点C的坐标为(4
,0),动点P沿着折线OACB的方向以1个单位每秒的速度匀速运动,同时点Q沿着折线OBCA的方向匀速运动,速度是2个单位长度每秒,运动时间为t秒,当他们相遇时同时停止运动.
(1)点A的坐标是正方形AOBC的面积是 .
(2)将正方形绕点O顺时针旋转45°,求旋转后的正方形与原正方形的重叠部分的面积.
(3)运动时间t为多少秒时,以A、P、B、Q四点为顶点的四边形为平行四边形?
(4)是否存在这样的t值,使△OPQ成为等腰三角形?若存在,请求出t的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OA⊥OC,OB⊥OD,下面结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正确的有(填序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买( )块肥皂.
A. 5 B. 4 C. 3 D. 2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB与CD相交于点O,∠A=∠AOC,∠B=∠BOD.

求证:∠C=∠D.
证明:∵∠A=∠AOC,∠B=∠BOD(已知)
又∠AOC=∠BOD()
∴∠A=∠B()
∴AC∥BD()
∴∠C=∠D() -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)已知a+b=-3,ab=5,求多项式4a2b+4ab2-4a-4b的值;
(2)已知x2-3x-1=0,求代数式3-3 x2+9x的值?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与面积.

相关试题