【题目】如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
![]()
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
参考答案:
【答案】解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形。
∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC。
∴∠ADB=90°。
∴平行四边形AEBD是矩形。
(2)当∠BAC=90°时,矩形AEBD是正方形。理由如下:
∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD。
∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形。
【解析】
试题(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.
(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形,
∵AB=AC,AD是∠BAC的角平分线,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四边形AEBD是矩形;
(2)当∠BAC=90°时,
理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,
∴AD=BD=CD,
∵由(1)得四边形AEBD是矩形,
∴矩形AEBD是正方形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,折痕为MN,则AN的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】用下列边长相同的正多边形组合,能够铺满地面不留缝隙的是()
A. 正八边形和正三角形 B. 正五边形和正八边形
C. 正六边形和正三角形 D. 正六边形和正五边形
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知平行四边形
中,
,垂足为
与
的延长线相交于
,且
,连接
;(1)如图
,求证:四边形
是菱形;(2)如图
,连接
,若
,在不添加任何辅助线的情况下,直接写出图
中所有面积等于
的面积的钝角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.
(1)求证:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为( )

A. 3 B. 4 C. 6 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查,下面是根据收集的数据绘制的两幅不完整的统计图.

根据图中提供的信息,解答下列问题:
(1)此次共调查了名学生,扇形统计图中,“艺术鉴赏”所对应的圆心角的度数是度;
(2)请把这个条形统计图补充完整;
(3)现该校700名学生报名参加这四个选修项目,请你估计有多少名学生参加了“数学思维”项目.
相关试题