【题目】如图,正方形ABCD的边长为4,点G、H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E、F,连接AG、AH.
(1)当BG=2,DH=3时,则GH:HF= ,∠AGH= °;
(2)若BG=3,DH=1,求DF、EG的长;
(3)设BG=x,DH=y,若△ABG∽△FDH,求y与x之间的函数关系式,并求出y的取值范围.
![]()
参考答案:
【答案】(1)1:3,90;(2)
;(3)3≤y<4.
【解析】试题分析:(1)根据正方形ABCD的边长为4,BG=2,DH=3,可得CG=2,CH=1,再根据DF∥CG,得出△FDH∽△GCH,根据相似三角形的性质可得GH:HF的值,最后根据勾股定理的逆定理,判定△AGH是直角三角形,且∠AGH=90°即可;
(2)根据正方形ABCD的边长为4,BG=3,DH=1,得出CG=1,CH=3,再根据CG∥DF,CH∥BE,可得△CGH∽△BGE∽△DFH,最后根据相似三角形的性质以及勾股定理,求得DF、EG的长;
(3)根据正方形ABCD的边长为4,BG=x,DH=y,得出CG=4﹣x,CH=4﹣y,由(1)可得,△FDH∽△GCH,而△ABG∽△FDH,进而得出△ABG∽△GCH,根据相似三角形的对应边成比例,可得y与x之间的函数关系式为:y=
x2﹣x+4,最后运用二次函数的性质求得3≤y<4即可.
试题解析:解:(1)∵正方形ABCD的边长为4,BG=2,DH=3,∴CG=2,CH=1,∵DF∥CG,∴△FDH∽△GCH,∴
,∵Rt△GCH中,GH2=CG2+CH2=5,Rt△ABG中,AG2=AB2+BG2=20,Rt△ADH中,AH2=AD2+DH2=25,∴GH2+AG2=AH2,∴△AGH是直角三角形,且∠AGH=90°.
故答案为:1:3,90;
(2)∵正方形ABCD的边长为4,BG=3,DH=1,∴CG=1,CH=3,∵CG∥DF,CH∥BE,∴△CGH∽△BGE∽△DFH,∴
,即
,解得BE=9,DF=
,∴Rt△BEG中,EG=
=
=
;
(3)∵正方形ABCD的边长为4,BG=x,DH=y,∴CG=4﹣x,CH=4﹣y,由(1)可得,△FDH∽△GCH,而△ABG∽△FDH,∴△ABG∽△GCH,∴
,即
,∴y与x之间的函数关系式为:y=
x2﹣x+4,∵
,∴4﹣y=
=
,∴当x=﹣
=2时,4﹣y有最大值,且最大值为﹣
×4+2=1,∴0<4﹣y≤1,解得3≤y<4.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.
(1)如图1,求证∠BAC=∠B+2∠E;
(2)如图2,过点A作AF⊥BC,垂足为点F,若∠DCE=2∠CAF,∠B=2∠E,求∠BAC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3,用<a>表示大于a的最小整数.例如:<2.5>=3,<4>=5,<-1.5>=-1.解决下列问题:
(1)[-2.6]=______,<6.2>=______.
(2)已知x,y满足方程组
,则[x]=______,<y>=______,x的取值范围是______,y的取值范围是______. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题
(1)抽取了______名学生成绩;(2)请把条形统计图补充完整;
(3)扇形统计图中等级D所在的扇形的圆心角度数是______;
(4)若A,B,C代表合格,该校初二年级有300名学生,求全年级生物合格的学生共约多少人

-
科目: 来源: 题型:
查看答案和解析>>【题目】光明电器超市销售每台进价分别为190元、160元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
2台
6台
1840元
第二周
5台
7台
2840 元
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备再采购这两种型号的电风扇共40台,这40台电风扇全部售出后,若利润不低于2660元,求A种型号的电风扇至少要采购多少台?
-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:

(1)作出△ABC绕点A逆时针旋转90°的△A1B1C1;作出△ABC关于原点O成中心对称的△A2B2C2;
(2)点B1的坐标为__________,点C2的坐标为__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在△ABC和△DCE中,∠ACB=∠DCE=90°,AC=DC,BC=EC,AB与DE相交于点F.
(1)如图1,求证AB=DE;
(2)如图2,连接CF,求证∠AFC=∠EFC;
(3)如图3,在(2)的条件下,当AF=EF时,连接BD,AE,延长CF交BD于点G,AE交CF于点H,若AE=8,BG=2,求线段GH的长.

相关试题