【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
![]()
(1)作出△ABC绕点A逆时针旋转90°的△A1B1C1;作出△ABC关于原点O成中心对称的△A2B2C2;
(2)点B1的坐标为__________,点C2的坐标为__________.
参考答案:
【答案】(1)见详解;(2)B1(-2,-3),C2(2,-2)
【解析】
(1)根据网格结构找出点A、B、C绕点A逆时针旋转90°后的点A1、B1、C1的位置,然后顺次连接即可,再找出点A、B、C关于原点O成中心对称的点A2、B2、C2的位置,然后顺次连接即可;
(2)根据平面直角坐标系写出点B1、C2的坐标.
解:(1)如下图所示△AB1C1,△A1B2C2,即为所求;
(2)如下图所示:B1(-2,-3),C2(2,-2);
![]()
故答案为:(-2,-3),(2,-2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题
(1)抽取了______名学生成绩;(2)请把条形统计图补充完整;
(3)扇形统计图中等级D所在的扇形的圆心角度数是______;
(4)若A,B,C代表合格,该校初二年级有300名学生,求全年级生物合格的学生共约多少人

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为4,点G、H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E、F,连接AG、AH.
(1)当BG=2,DH=3时,则GH:HF= ,∠AGH= °;
(2)若BG=3,DH=1,求DF、EG的长;
(3)设BG=x,DH=y,若△ABG∽△FDH,求y与x之间的函数关系式,并求出y的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】光明电器超市销售每台进价分别为190元、160元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
2台
6台
1840元
第二周
5台
7台
2840 元
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备再采购这两种型号的电风扇共40台,这40台电风扇全部售出后,若利润不低于2660元,求A种型号的电风扇至少要采购多少台?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在△ABC和△DCE中,∠ACB=∠DCE=90°,AC=DC,BC=EC,AB与DE相交于点F.
(1)如图1,求证AB=DE;
(2)如图2,连接CF,求证∠AFC=∠EFC;
(3)如图3,在(2)的条件下,当AF=EF时,连接BD,AE,延长CF交BD于点G,AE交CF于点H,若AE=8,BG=2,求线段GH的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、室O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒
个单位长度,则第2018秒时,点P的坐标是( )
A. (2017,0)B. (2018,﹣1)C. (2017,1)D. (2018,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】填空并完成推理过程.

如图,E点为DF上的点,B点为AC上的点,∠1=∠2,∠C=∠D,试说明:AC∥DF.
证明:∵∠1=∠2(已知)
∠1=∠3(对顶角相等)
∴∠2=∠3( )
∴____∥______( )
∴∠C=∠ABD( )
又∵∠C=∠D(已知)
∴∠D=∠ABD(等量代换)
∴AC∥DF( )
相关试题