【题目】如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5
cm,且tan∠EFC=
,则矩形ABCD的周长是 . ![]()
参考答案:
【答案】36cm
【解析】解:设CE=3k,则CF=4k,由勾股定理得EF=DE=5k,
∴DC=AB=8k,
∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,
∴∠BAF=∠EFC,
∴tan∠BAF=tan∠EFC=
,
∴BF=6k,AF=BC=AD=10k,
在Rt△AFE中由勾股定理得AE=
=
=5
,
解得:k=1,
故矩形ABCD的周长=2(AB+BC)=2(8k+10k)=36cm.
【考点精析】解答此题的关键在于理解翻折变换(折叠问题)的相关知识,掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.

(1)请判断:FG与CE的数量关系是__________,位置关系是__________;
(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E关于AC所在直线的对称点.
(1)证明:四边形CFAE为菱形;
(2)连接EF交AC于点O,若BC=10,求线段OF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知AD∥BE,∠B=∠D.
(1)求证:AB∥CD;
(2)若∠1=∠2=60°,∠BAC=3∠EAC,求∠DCE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下表是根据对初一(1)班的50名同学平时最爱吃的食物的种类进行的问卷调查绘制成的统计表,请填满缺少的项并回答后面的问题.
肉类
蔬菜类
瓜果类
水产类
男生
22
1
2
女生
4
5
3
频率
64%
14%
12%
(1)选择适当的统计图表示男生平时最爱吃的食物的种类情况;
(2)就给出的初一(1)班的同学平时最爱吃的食物的种类情况,请你结合自己的年龄特点简略谈谈自己的看法.
相关试题