【题目】如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF.
![]()
参考答案:
【答案】详见解析.
【解析】
根据已知条件证明AB=CD,AF=CF,证明 Rt△ABF≌Rt△CDE(HL),得BF=DE,进而证明△BFG≌△DEG(AAS),即可证明.
证明∵DE⊥AC,BF⊥AC,
∴∠DEG=∠BFE=90°,
∵AE=CF,AE+EF=CF+EF,即AF=CE.
在Rt△ABF和Rt△CDE中,AB=CD,AF=CF,
∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE.
在△BFG和△DEG中,∠BFG=∠DEG,∠BGF=∠DGE,BF=DE
∴△BFG≌△DEG(AAS),
∴FG=EG,即BD平分EF
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的顶点A、B、C都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形,试在方格纸上按下列要求画格点三角形:
(1)将△ABC先向下平移4个单位,再向右平移2个单位得到△A1B1C1;
(2)线段AC与A1C1的关系 ;
(3)画AC边上的高线BE;(利用网格点和直尺画图)
(4)连接CC1,则∠BCC1= °.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.

(1)请判断:FG与CE的数量关系是__________,位置关系是__________;
(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点A,B,C,D分别在l1,l2,l3,l4上,过点D作DE⊥l1于点E,已知相邻两条平行线之间的距离为1,求AE及正方形ABCD的边长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5
cm,且tan∠EFC=
,则矩形ABCD的周长是 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E关于AC所在直线的对称点.
(1)证明:四边形CFAE为菱形;
(2)连接EF交AC于点O,若BC=10,求线段OF的长.

相关试题