【题目】已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.
(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;
(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,
①AE与OD的大小有什么关系?为什么?
②求∠ODC的度数.
![]()
参考答案:
【答案】(1) ∠ODC=45°;(2) AE=OD.理由见解析;∠ODC=36°.
【解析】试题分析:(1)连接OC,因为CD是⊙O的切线,得出∠OCD=90°,由OC=CD,得出∠ODC=∠COD,即可求得.
(2)连接OE,
①证明△AOE≌△OCD,即可得AE=OD;
②利用等腰三角形及平行线的性质,可求得∠ODC的度数.
试题解析:(1)如图①,连接OC,
![]()
∵OC=OA,CD=OA,
∴OC=CD,
∴∠ODC=∠COD,
∵CD是⊙O的切线,
∴∠OCD=90°,
∴∠ODC=45°;
(2)如图②,连接OE.
![]()
∵CD=OA,∴CD=OC=OE=OA,
∴∠1=∠2,∠3=∠4.
∵AE∥OC,
∴∠2=∠3.
设∠ODC=∠1=x,则∠2=∠3=∠4=x.
∴∠AOE=∠OCD=180°-2x.
①AE=OD.理由如下:
在△AOE与△OCD中,
![]()
∴△AOE≌△OCD(SAS),
∴AE=OD.
②∠6=∠1+∠2=2x.
∵OE=OC,∴∠5=∠6=2x.
∵AE∥OC,
∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,
∴x=36°.
∴∠ODC=36°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把下列各数填在相应的大括号中:8,﹣
,+2.8,π,
,﹣0.003,0,﹣100,﹣3.626626662……正数集合{_____ …}
整数集合{_____…}
负分数集合{_____ …}
无理数集合{_____ …}.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图 1,直线 y=﹣
x+6 与 y 轴于点 A,与 x 轴交于点 D,直线 AB 交 x 轴于点 B,
AOB 沿直线 AB 折叠,点 O 恰好落在直线 AD 上的点 C 处.(1)求点 B 的坐标;

(2)如图 2,直线 AB 上的两点 F、G,
DFG 是以 FG 为斜边的等腰直角三角形,求点 G 的坐标;
(3)如图 3,点 P 是直线 AB 上一点,点 Q 是直线 AD 上一点,且 P、Q 均在第四象限,点 E 是 x 轴上一点,若四边形 PQDE 为菱形,求点 E 的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某摩托车厂本周计划每日生产450辆摩托车,由于工人实行轮休, 每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表: [增加的辆数为正数,减少的辆数为负数]
星期
一
二
三
四
五
六
日
增减
-5
+7
-3
+4
+10
-9
-25
(1)本周星期六生产多少辆摩托车?
(2)本周总产量与计划产量相比,是增加了还是减少了?为什么?
(3)产量最多的那天比产量最少的那天多生产多少辆?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列条件中能判定四边形ABCD是平行四边形的是( )
A.∠A=∠B,∠C=∠DB.AB=AD,CB=CD
C.AB=CD,AD=BCD.AB∥CD,AD=BC
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:求值1+2+22+23+24+…+22014
解:设S=1+2+22+23+24+…+22014 ①,将等式两边同时乘以2得
2S=2+22+23+24+…+22014+22015 ②
将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1
请你仿照此法计算:
(1)1+3+32+33+…+3100
(2)1+
+
+
+…+
.
相关试题