【题目】某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.
(1)求y关于x的函数表达式.
(2)若购进A种的数量不少于B种的数量.
①求至少购进A种多少本?
②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)
参考答案:
【答案】(1)y=
,(2)①至少购进A种40本,②30.
【解析】
(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;
(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;
②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C种的数量多于B种的数量,列出不等式,可求解.
解:(1)∵12x+20y=1200,
∴y=
,
(2)①∵购进A种的数量不少于B种的数量,
∴x≥y,
∴x≥
,
∴x≥
,
∵x,y为正整数,
∴至少购进A种40本,
②设A种的数量为x本,B种的数量y本,C种的数量c本,
根据题意得:12x+20y+8c=1200
∴y=![]()
∵C种的数量多于B种的数量
∴c>y
∴c>![]()
∴c>
,
∵购进A种的数量不少于B种的数量,
∴x≥y
∴x≥![]()
∴c≥150﹣4x
∴c>
,
且x,y,c为正整数,
∴C种至少有30本
故答案为30本.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,花丛中有一路灯杆AB. 在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米. 如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).

-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:对于依次排列的多项式x+a,x+b,x+c,x+d(a,b,c,d是常数),当它们满足在
,且M为常数时,则称a,b,c,d是一组平衡数,M是该组平衡数的平衡因子,例如:对于多项式x+2,x+1,x+6,x+5,因为
,所以2,1,6,5是一组平衡数,4是该组平衡数的平衡因子.(1)已知2,4,7,9是一组平衡数,求该组平衡数的平衡因子M;
(2)若a,b,c,d是一组平衡数,a=-4,d=3,请直接写出组b,c的值;
(3)当a,b,c,d之间满是什么数量关系时,它们是一组平衡数,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.
(1)求证:∠AEC=∠ACE;
(2)若∠AEC=2∠B,AD=2,求AB的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx+8(k<0)交y轴于点A,交x轴于点B.将△AOB关于直线AB翻折得到△APB.过点A作AC∥x轴交线段BP于点C,在AC上取点D,且点D在点C的右侧,连结BD.

(1)求证:AC=BC
(2)若AC=10.
①求直线AB的表达式.
②若△BCD是以BC为腰的等腰三角形,求AD的长.
(3)若BD平分∠OBP的外角,记△APC面积为S1,△BCD面积为S2,且
=
,则
的值为______(直接写出答案) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连结BH.
(1)求证:AC=CD;
(2)若OB=2,求BH的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD⊥AD于D,CE⊥AD于E,交AB于点F,CE=10,BD=4,则DE的长为( )

A. 6B. 5C. 4D. 8
相关试题