【题目】城市规划期间,欲拆除一电线杆AB,已知距电线杆AB水平距离14 m的D处有一大坝,背水坡CD的坡度i=1∶2,坝高CF为2 m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2 m的人行道.
(1)求BF的长;
(2)在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域,
≈1.732,
≈1.414)
![]()
参考答案:
【答案】(1)BF=18m;(2)故需封闭人行道DE,理由见解析.
【解析】试题分析:首先分析图形,根据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.
试题解析:∵
∴DF=1;
∴BF=BD+DF=14+1=15;
过C作CH⊥AB于H;
∴人行道不需要封上.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原销售价之和为500元.问:这两种商品的原销售价分别为多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了庆祝即将到来的2017年元旦,某校举行了书法比赛,赛后整理参赛同学的成绩,并制作成图表如下:
分数段
频数
频率
60≤x<70
30
0.15
70≤x<80
m
0.45
80≤x<90
60
n
90≤x≤100
20
0.1
请根据以上图表提供的信息,解答下列问题:
(1)这次共调查了 名学生;表中的数m= ,n= ;
(2)请在图中补全频数分布直方图;
(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是 ;
(4)如果比赛成绩在80分以上(含80分)可获得奖励,那么获奖概率是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°
(1)如图1,若∠ABE=63°,∠BAC=45°,求∠FAC的度数;
(2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论;
(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x=
;(1)求x2+y2﹣xy的值;
(2)若x的小数部分为a,y的小数部分为b,求(a+b)2+
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学组织植树活动,按年级将七、八、九年级学生分成三个植树队,七年级植树x棵,八年级种的数比七年级种的数的2倍少26棵,九年级种的树比八年级种的树的一半多42棵.
(1)请用含x的式子表示三个队共种树多少棵.
(2)若这三个队共种树423棵,请你求出这三队各种了多少棵树.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.

(1)求证:△DEC≌△EDA;
(2)求DF的值;
(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.
相关试题