【题目】将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C. ![]()
(1)求点O′的高度O′C;(精确到0.1cm)
(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)
(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度? 参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)
参考答案:
【答案】
(1)解:∵B′O′⊥OA,垂足为C,∠AO′B=115°,
∴∠AO′C=65°,
∵cos∠CO′A=
,
∴O′C=O′Acos∠CO′A=20cos65°=8.46≈8.5(cm)
(2)解:如图2,过B作BD⊥AO交AO的延长线于D,
∵∠AOB=115°,
∴∠BOD=65°,
∵sin∠BOD=
,
∴BD=OBsin∠BOD=20×sin65°=18.12,
∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),
∴显示屏的顶部B′比原来升高了10.3cm
![]()
(3)解:如图4,过O′作EF∥OB交AC于E,
∴∠FEA=∠BOA=115°,
∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,
∴显示屏O′B′应绕点O′按顺时针方向旋转25度
![]()
【解析】(1)解直角三角形即可得到结论;(2)如图2,过B作BD⊥AO交AO的延长线于D,根据三角函数的定义即可得到结论;(3)如图4,过O′作EF∥OB交AC于E,根据平行线的性质得到∠FEA=∠BOA=115°,于是得到结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC=
.点E为线段BD上任意一点(点E与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=
.
(1)求BD的长;
(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;
(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=
(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=

求:
(1)反比例函数的解析式;
(2)点C的坐标;
(3)∠ABC的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,点D,E分别在边AB,BC上,BABD=BCBE

(1)求证:DEAB=ACBE;
(2)如果AC2=ADAB,求证:AE=AC. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.

(1)求证:△BDE∽△CAE;
(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=
.
(1)求证:BC2=CDBE;
(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;
(3)如果△DBC∽△DEB,求CE的长.
相关试题