【题目】如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:( )
![]()
A.
B.
C.
D. ![]()
参考答案:
【答案】D
【解析】试题分析:根据等边对等角可得∠B=∠C=45°,且根据勾股定理可求得BC=
,然后可根据
三角形的内角和可知∠BDE+∠BED=180°-∠B=135°,由∠EDF=45°,可知∠BDE+∠CDF=180°-∠EDF=135°,因此可得∠BDE=∠CDF,由两角对应相等的两三角形相似可得△BED∽△CDF,然后根据相似三角形的性质可得
,再由BD=2CD可得BD=
,CD=
,即
,解得
,然后根据E,F分别在AB,AC上运动,可得0<x≤3,0<y≤3,可知D正确.
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知(x+1)(x﹣2)=x2+mx+n,则m+n=________
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知学校航模组设计制作的火箭模型的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则火箭升空到最高点需要的时间为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:
次数
60≤x<90
90≤x<120
120≤x<150
150≤x<180
180≤x<210
频数
16
25
9
7
3
(1)全班有多少同学?
(2)组距是多少?组数是多少?
(3)跳绳次数x在120≤x<180范围的同学有多少?占全班同学的百分之几?
(4)画出适当的统计图表示上面的信息. -
科目: 来源: 题型:
查看答案和解析>>【题目】【现场学习】
定义:我们把绝对值符号内含有未知数的方程叫做“含有绝对值的方程”.
如:|x|=2,|2x﹣1|=3,|
|﹣x=1,…都是含有绝对值的方程.
怎样求含有绝对值的方程的解呢?基本思路是:含有绝对值的方程→不含有绝对值的方程.
我们知道,根据绝对值的意义,由|x|=2,可得x=2或x=﹣2.
(1)[例]解方程:|2x﹣1|=3.
我们只要把2x﹣1看成一个整体就可以根据绝对值的意义进一步解决问题.
解:根据绝对值的意义,得2x﹣1=3或2x﹣1= .
解这两个一元一次方程,得x=2或x=﹣1.
检验:
①当x=2时,
原方程的左边=|2x﹣1|=|2×2﹣1|=3,
原方程的右边=3,
∵左边=右边
∴x=2是原方程的解.
②当x=﹣1时,
原方程的左边=|2x﹣1|=|2×(﹣1)﹣1|=3,
原方程的右边=3,
∵左边=右边
∴x=﹣1是原方程的解.
综合①②可知,原方程的解是:x=2,x=﹣1.
【解决问题】
解方程:|
|﹣x=1.
(2)【解决问题】解方程:|
|﹣x=1. -
科目: 来源: 题型:
查看答案和解析>>【题目】如不等式组
解集为2<x<3,则a,b的值分别为( )
A.﹣2,3
B.2,﹣3
C.3,﹣2
D.﹣3,2
相关试题