【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
![]()
参考答案:
【答案】(1)2(2)当点P、Q运动时,线段DE的长度不会改变。理由见解析
【解析】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°。
∵∠BQD=30°,∴∠QCP=90°。
设AP=x,则PC=6﹣x,QB=x,∴QC=QB+C=6+x。
∵在Rt△QCP中,∠BQD=30°,∴PC=
QC,即6﹣x=
(6+x),解得x=2。
∴当∠BQD=30°时,AP=2。
(2)当点P、Q运动时,线段DE的长度不会改变。理由如下:
作QF⊥AB,交直线AB的延长线于点F,连接QE,PF。![]()
∵PE⊥AB于E,∴∠DFQ=∠AEP=90°。
∵点P、Q做匀速运动且速度相同,∴AP=BQ。
∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°。
∴在△APE和△BQF中,
∵∠A=∠FBQ,AP=BQ,∠AEP=∠BFQ=90°,∴△APE≌△BQF(AAS)。
∴AE=BF,PE=QF且PE∥QF。∴四边形PEQF是平行四边形。
∴DE=
EF。
∵EB+AE=BE+BF=AB,∴DE=
AB。
又∵等边△ABC的边长为6,∴DE=3。
∴当点P、Q运动时,线段DE的长度不会改变。
(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QCP=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=
QC,即6﹣x=
(6+x),求出x的值即可。
(2)作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=
AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变。
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,直线y=2x﹣3与y轴交于点A,点A与点B关于x轴对称,过点B作y轴的垂线l,直线l与直线y=2x﹣3交于点C.
(1)求点C的坐标;
(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=BC,∠B=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.

(1)如果点D在线段BC上运动,如图1:
①依题意补全图1;
②求证:∠BAD=∠EDC;
③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°,.
小明与同学讨论后,形成了证明这个结论的几种想法:
想法一:在AB上取一点F,使得BF=BD,要证∠DCE=135°,只需证△ADF≌△DEC.
想法二:以点D为圆心,DC为半径画弧交AC于点F,要证∠DCE=135°,只需证△AFD≌△DCE.
想法三:过点E作BC所在直线的垂直线段EF,要证∠DCE=135°,只需证EF=CF.
…
请你参考上面的想法,证明∠DCE=135°
(2)如果点D在线段CB的延长线上运动,利用图2画图分析,∠DCE的度数还是确定的值吗?如果是,直接写出∠DCE的度数;如果不是,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′=
,那么称点Q为点P的“关联点”.
(1)请直接写出点(3,5)的“关联点”的坐标;
(2)如果点P在函数y=x﹣2的图象上,其“关联点”Q与点P重合,求点P的坐标;
(3)如果点M(m,n)的“关联点”N在函数y=2x2的图象上,当0≤m≤2时,求线段MN的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一直角坐标系中,函数y=ax2﹣b与y=ax+b(ab≠0)的图象大致如图( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在等腰直角三角形BCD中,∠BDC=90°, BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF.
(1)求证:△FBD≌△ACD;
(2)延长BF交AC于点E,且BE⊥AC,求证:CE=
BF;(3)在(2)的条件下,H是BC边的中点,连接DH,与BE相交于点G,如图②. 试探索CE,GE,BG之间的数量关系,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:
①ac<0 ②2a+b=0 ③4a+2b+c>0 ④对任意实数x均有ax2+bx≥a+b
正确的结论序号为: .
相关试题