【题目】如图1,P是△ABC外部的一定点,D是线段BC上一动点,连接PD交AC于点E.
小明根据学习函数的经验,对线段PD,PE,CD的长度之间的关系进行了探究,
![]()
下面是小明的探究过程,请补充完整:
(1)对于点D在BC上的不同位置,画图、测量,得到了线段PD,PE,CD的长度的几组值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | |
PD/cm | 2.56 | 2.43 | 2.38 | 2.43 | 2.67 | 3.16 | 3.54 | 4.45 | 5.61 |
PE/cm | 2.56 | 2.01 | 1.67 | 1.47 | 1.34 | 1.32 | 1.34 | 1.40 | 1.48 |
CD/cm | 0.00 | 0.45 | 0.93 | 1.40 | 2.11 | 3.00 | 3.54 | 4.68 | 6.00 |
在PD,PE,CD的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出图2中所确定的两个函数的图象;
(3)结合函数图象,解决问题:
连接CP,当△PCD为等腰三角形时,CD的长度约为 cm.(精确到0.1)
参考答案:
【答案】(1)CD,PD,PE;(2)见解析;(3)2.6,1.9,3.5
【解析】
(1)根据函数的定义,确定自变量,函数即可.
(2)利用描点法画出函数图象即可.
(3)分三种情形:当PD=PC时,见图中点B,此时CD≈1.9cm.当CD=PD时,见图中点A,此时CD≈3.5cm.当CD=PC时,CD≈2.6cm.
解:(1)确定CD的长度是自变量,PD的长度和PE的长度都是这个自变量的函数;
(2)函数图象如图所示:
![]()
(3)观察图象可知,PC=2.6cm,
当PD=PC时,见图中点B,此时CD≈1.9cm.
当CD=PD时,见图中点A,此时CD≈3.5cm.
当CD=PC时,CD≈2.6cm.
故答案为2.6,1.9,3.5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边△ABC,作它的外接圆⊙O,连接AO并延长交⊙O于点D,交BC于点E,过点D作DF∥BC,交AC的延长线于点F.
(1)依题意补全图形并证明:DF与⊙O相切;
(2)若AB=6,求CF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,反比例函数y=
(x>0)的图象G与直线l:y=2x﹣4交于点A(3,a).(1)求k的值;
(2)已知点P(0,n)(n>0),过点P作平行于x轴的直线,与图象G交于点B,与直线l交于点C.横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段AC,BC围成的区域(不含边界)为W.
①当n=5时,直接写出区域W内的整点个数;
②若区域W内的整点恰好为3个,结合函数图象,直接写出n的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,二次函数y=x2﹣2mx+1图象与y轴的交点为A,将点A向右平移4个单位长度得到点B.
(1)直接写出点A与点B的坐标;
(2)求出抛物线的对称轴(用含m的式子表示);
(3)若函数y=x2﹣2mx+1的图象与线段AB恰有一个公共点,求m的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC中,AB=BC,∠ABC=90°,将线段AB绕点A逆时针旋转α(0°<α<90°)得到线段AD.作射线BD,点C关于射线BD的对称点为点E.连接AE,CE.
(1)依题意补全图形;
(2)若α=20°,直接写出∠AEC的度数;
(3)写出一个α的值,使AE=
时,线段CE的长为
﹣1,并证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABM中,∠ABM=90°,以AB为一边向△ABM的异侧作正方形ABCD,以A为圆心,AM为半径作⊙A,我们称正方形ABCD为⊙A的“关于△ABM的友好正方形”,如果正方形ABCD恰好落在⊙A的内部(或圆上),我们称正方形ABCD为⊙A的“关于△ABM的绝对友好正方形”,例如,图1中正方形ABCD是⊙A的“关于△ABM的友好正方形”.
(1)图2中,△ABM中,BA=BM,∠ABM=90°,在图中画出⊙A的“关于△ABM的友好正方形ABCD”.
(2)若点A在反比例函数y=
(k>0,x>0)上,它的横坐标是2,过点A作AB⊥y轴于B,若正方形ABCD为⊙A的“关于△ABO的绝对友好正方形”,求k的取值范围.(3)若点A是直线y=﹣x+2上的一个动点,过点A作AB⊥y轴于B,若正方形ABCD为⊙A的“关于△ABO的绝对友好正方形”,求出点A的横坐标m的取值范围.

相关试题