【题目】一天,某客运公司的甲、乙两辆客车分别从相距380千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时15分钟时也经过C地,未停留继续开往A地.(友情提醒:画出线段图帮助分析)
(1)乙车的速度是________千米/小时,B、C两地的距离是________千米, A、C两地的距离是________千米;
(2)求甲车的速度;
(3)这一天,乙车出发多长时间,两车相距200千米?
参考答案:
【答案】(1)80;180;200;(2)100千米/小时;(3)乙车出发1或
小时,两车相距200千米.
【解析】
(1)由题意可知,甲车2小时到达C地,休息了20分钟,乙车行驶2小时15分钟也到C地,这15分钟甲车未动,即乙车15分钟走了20千米,据此可求出乙车的速度,再根据速度求出B、C两地的距离和A、C两地的距离即可解答.(2)根据A、C两地的距离和甲车到达配货站C地的时间可求出甲车的速度;(3)分为相遇前和相遇后两种情况相距200千米两种情况列方程求解.
(1)15分钟=0.25小时,
乙车的速度=20÷0.25=80(千米/时);
B、C两地的距离=80×2.25=180千米;
A、C两地的距离=380-180=200千米;
故答案为80,180,200.
(2)甲车的速度=200÷2=100千米/小时
(3)设乙车出发x小时,两车相距200千米,由题意得
100 x+80 x+200=380或100(x-
)+80x-200=380
解得x=1或x= ![]()
答:这一天,乙车出发1或
小时,两车相距200千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(南阳唐河县期中)如图,在ABCD中,DE平分∠ADC交AB于G,交CB的延长线于E,BF平分∠ABC交AD的延长线于F.
(1)若AD=5,AB=8,求GB的长;
(2)求证:∠E=∠F.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠A=∠AGE,∠D=∠DGC.
(1)试说明AB∥CD;
(2)若∠1+∠2=180°,且∠BEC=2∠B+60°,求∠C的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:|2a﹣b﹣1|+
=0.(1)求A、B两点的坐标;
(2)将线段AB平移到CD,点A的对应点为C(﹣2,t),如图1所示.若三角形ABC的面积为9,求点D的坐标;
(3)平移线段AB到CD,若点C、D也在坐标轴上,如图2所示,P为线段AB上的一动点(不与A、B重合),连接OP,PE平分∠OPB,∠BCE=2∠ECD.求证:∠BCD=3(∠CEP﹣∠OPE).

-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,AB=4,AD=6,M是AD边的中点,P是射线AB上的一个动点(不与A,B重合),MN⊥PM交射线BC于N点.

(1)如图1,当点N与点C重合时,求AP的长;
(2)如图2,在点N的运动过程中,求证:
为定值;
(3)在射线AB上,是否存在点P,使得△DCN∽△PMN?若存在,求此时AP的长;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2﹣2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:
(1)试判断ac的符号;
(2)若c=﹣1,该二次函数图象与y轴交于点C,且S△ABC=1.
①求a的值;
②当该二次函数图象与端点为M(﹣1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
相关试题