【题目】如图,在矩形ABCD中,E是AB的中点,连接DE、CE.
(1)求证:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周长.
![]()
参考答案:
【答案】(1)证明见解析;(2)16.
【解析】(1)由全等三角形的判定定理SAS即可证得结论;
(2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答.
(1)在矩形ABCD中,AD=BC,∠A=∠B=90°.
∵E是AB的中点,
∴AE=BE,
在△ADE与△BCE中,
,
∴△ADE≌△BCE(SAS);
(2)由(1)知:△ADE≌△BCE,则DE=EC,
在直角△ADE中,AE=4,AE=
AB=3,
由勾股定理知,DE=
=5,
∴△CDE的周长=2DE+AD=2DE+AB=2×5+6=16.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.

(1)求证:AD=DE;
(2)若CE=2,求线段CD的长;
(3)在(2)的条件下,求△DPE的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系,并说明理由.
(1)如图①,AB∥CD,BE∥DF,∠1与∠2的关系是 ;
证明:
(2)如图②,AB∥CD,BE∥DF,∠1与∠2的关系是 ;
证明:
(3)经过上述证明,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角 ;
(4)若这两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠A=
∠B=
∠ACB,CD是△ABC的高,CE是∠ACB的角平分线,求∠DCE的度数。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.
(1)求抛物线的解析式和对称轴;
(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;
(3)设四边形DECO的面积为s,求s关于t的函数表达式. -
科目: 来源: 题型:
查看答案和解析>>【题目】“化归与转化的思想”是指在研究解决数学问题时采用某种手段将问题通过变换使之转化,进而使问题得到解决:
(1)我们知道m2+n2=0可以得到m=0,n=0.如果a2+b2+2a﹣4b+5=0,求a、b的值.
(2)已知a
x+2017,b
x+2015,c
x+2016,试问:多项式a2+b2+c2﹣ab﹣ac﹣bc的值是否与变量x的取值有关?若有关请说明理由;若无关请求出多项式的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层。第二层……第n层,第n层的小正方体的个数记为S.解答下列问题:
(1)填写表格:
n
1
2
3
4
…
S
1
…
(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?

相关试题