【题目】已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.![]()
(1)求证:AD=DE;
(2)若CE=2,求线段CD的长;
(3)在(2)的条件下,求△DPE的面积.
参考答案:
【答案】
(1)解:∵AB是⊙O的直径,
∴∠ADB=90°,即BD⊥AC
∵AB=BC,
∴BD是等腰△ABC中线,
∴AD=DE;
(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,
∵∠C=∠C,∴△CED∽△CAB,∴
,
∵AB=BC=10,CE=2,D是AC的中点,
∴CD=
;
(3)解:延长EF交⊙O于M,![]()
在Rt△ABD中,AD=
,AB=10,
∴BD=3
,
∵EM⊥AB,AB是⊙O的直径,
∴
,
∴∠BEP=∠EDB,
∴△BPE∽△BED,
∴
,
∴BP=
,
∴DP=BD-BP=
,
∴S△DPE:S△BPE=DP:BP=13:32,
∵S△BCD=
×
×3
=15,S△BDE:S△BCD=BE:BC=4:5,
∴S△BDE=12,
∴S△DPE=
.
【解析】(1)根据已知条件AB是⊙O的直径得出∠ADB=90°,再根据等腰三角形的三线合一的性质即可得出结论。
(2)根据圆内接四边形的性质证得∠CED=∠CAB,再根据相似三角形的判定证出△CED∽△CAB,得出对应边成比例,建立关于CD的方程,即可求出CD的长。
(3)延长EF交⊙O于M,在Rt△ABD中,利用勾股定理求出BD的长,再证明△BPE∽△BED,根据相似三角形的性质得对应边成比例求出BP的长,然后根据等高的三角形的面积之比等于对边之比,再由三角形面积公式即可求解。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
点
在边
上,
点
为边
上一动点,连接
与
关于
所在直线对称,点
分别为
的中点,连接
并延长交
所在直线于点
,连接
.当
为直角三角形时,
的长为_________ .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,-2),反比例函数
(k≠0)的图象经过A,C两点.
(1)求点C的坐标及反比例函数的解析式.
(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°

(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?

(3)如图3,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系? (2、3小题只需选一题说明理由)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系,并说明理由.
(1)如图①,AB∥CD,BE∥DF,∠1与∠2的关系是 ;
证明:
(2)如图②,AB∥CD,BE∥DF,∠1与∠2的关系是 ;
证明:
(3)经过上述证明,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角 ;
(4)若这两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠A=
∠B=
∠ACB,CD是△ABC的高,CE是∠ACB的角平分线,求∠DCE的度数。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E是AB的中点,连接DE、CE.
(1)求证:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周长.

相关试题