【题目】如图,在⊙O中,AB是⊙O的直径,AB=10,
,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=
∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是( )
![]()
A. 1 B. 2 C. 3 D. 4
参考答案:
【答案】C
【解析】
根据弧AC=弧CD=弧DB和点E是点D关于AB的对称点,求出∠DOB=∠COD=∠BOE=60°,求出∠CED,即可判断①②;根据圆周角定理求出M和A重合时,∠MDE=60°,即可判断③;根据轴对称的性质,求出M的位置,根据圆周角定理求出此时CE为直径,即可得到CE的长,判断④.
∵弧AC=弧CD=弧DB,
∴∠DOB=∠COD=∠BOE=60°,
故①正确;
∵AB为直径,且点E是点D关于AB的对称点
∴∠E=∠D,AB⊥DE
∴∠CED=
∠DOB=30°,
故②正确;
∵M和A重合时,∠MDE=60°,
∴∠MDE+∠E=90°
∴DM⊥CE
故③不正确;
根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,
∵∠DOB=∠COD=∠BOE=60°
∴CE为直径,即CE=10,
故④正确.
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).
(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.
(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出此时点E的坐标.
②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,△ABC中,BD平分∠ABC,CE平分∠ACB的邻补角∠ACM,若∠BDC=130°,∠E=50°,则∠BAC的度数是_______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D,连接AC,BD,CD.

(1)求点C,D的坐标及S四边形ABDC;
(2)在y轴上是否存在一点Q,连接QA,QB,使S△QAB=S四边形ABDC若存在这样一点,求出点Q的坐标;若不存在,试说明理由;
(3)如图②,点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合),求证:∠DCP+∠BOP=∠CPO.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,每个立方体的
个面上分别写有
到
这
个自然数,并且任意两个相对面上所写两个数字之和为
,把这样的
个立方体一个挨着一个地连接起来,紧挨着两个面上的数字之和为
,则图中“· ”所 在面上的数字是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.
(1)求证:AB是半圆O所在圆的切线;
(2)若cos∠ABC=
,AB=12,求半圆O所在圆的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.
(1)求证:AD平分∠BAC;
(2)若CD=1,求图中阴影部分的面积(结果保留π).

相关试题