【题目】等边三角形ABC 中,BD是角平分线,点E在BC边的延长线上,且CD=CE,则∠BDE的度数是( )
![]()
A.90°B.100°C.120°D.无法确定
参考答案:
【答案】C
【解析】
根据等边三角形的性质可得∠ACB=60°,∠DBC=30°,根据CD=CE可得∠CDE=∠CED,根据∠CDE+∠CED=∠ACB即可求得∠CED=30°.进而可得到∠BDE的度数.
解:∵三角形ABC是等边三角形,BD是角平分线,
∴∠ACB=60°,∠DBC=
∠ABC= 30°,
∵CD=CE,
∴∠CDE=∠CED,
∵∠CDE+∠CED=∠ACB
∴∠CED=30°,
∴∠BDE=180°-∠DBC-∠CED
=180°-30°-30°
=120°
故选:C
-
科目: 来源: 题型:
查看答案和解析>>【题目】某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):
星期
一
二
三
四
五
六
日
增减







(1)根据记录可知前三天共生产______辆.
(2)产量最多的一天比产量最少的一天多生产_______辆.
(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于整式
(其中m是大于
的整数).(1)若
,且该整式是关于x的三次三项式,求m的值;(2)若该整式是关于x的二次单项式,求m,n的值;
(3)若该整式是关于x的二次二项式,则m,n要满足什么条件?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=3ax2+2bx+c,
(1)若a=3k,b=5k,c=k+1,试说明此类函数图象都具有的性质;
(2)若a=
, c=2+b且抛物线在﹣2≤x≤2区间上的最小值是﹣3,求b的值;(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2-2ax+b经过点C(0,-
),且与x轴交于点A、点B,若tan
ACO=
.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M,点P是线段OB上一动点(不与点B重合),
MPQ=45
,射线PQ与线段BM交于点Q,当△MPQ为等腰三角形时,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线与x轴交于点A(﹣
, 0),点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的解析式;
(2)N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣
<t<2),求△ABN的面积s与t的函数解析式;(3)若0<t<2且t≠0时,△OPN∽△COB,求点N的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用
,
表示直角三角形的两直角边
,下列四个说法:①
;②
;③
;④
;其中说法正确的是


A. ①②B. ①②③C. ①②④D. ①②③④
相关试题