【题目】对于整式
(其中m是大于
的整数).
(1)若
,且该整式是关于x的三次三项式,求m的值;
(2)若该整式是关于x的二次单项式,求m,n的值;
(3)若该整式是关于x的二次二项式,则m,n要满足什么条件?
参考答案:
【答案】(1)m=1;(2)m=-1,n=-1;(3)n=1,m为大于-2任意整数或m=-1,n≠-1或m=0,n≠4.
【解析】
(1)根据已知条件可得到关于m的方程m+2=3,解方程即可得到m的值;
(2)根据该多项式是关于x的二次单项式,可得到m+2=1,n-1=-2,据此计算即可;
(3)同样的,根据上面的分析方法,结合关于x的二次二项式的特点解答即可.
(1)因为n=2,且该多项式是关于x的三次三项式,所以原多项式变为
,所以m=1,即m的值为1.
(2)因为该多项式是关于x的二次单项式,
所以m+2=1,n-1=-2
解得m=-1,n=-1
(3)因为该多项式是关于x的二次二项式,
所以①
这一项不存在,原多项式是关于x的二次二项式,
则n-1=0,即n=1,m为大于-2任意整数
②若
的次数为1,系数不为-2,原多项式是关于x的二次二项式,
则m=-1,n≠-1
③
的次数为2,系数不为3,原多项式是关于x的二次二项式,
则m=0,n≠4.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.

(1)若∠BAC=50°,求∠AEB的度数;
(2)求证:∠AEB=∠ACF;
(3)试判断线段EF、BF与AC三者之间的等量关系,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4). 点
从
出发以每秒2个单位长度的速度向
运动;点
从
同时出发,以每秒1个单位长度的速度向
运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点
作
垂直
轴于点
,连结AC交NP于Q,连结MQ. 
【1】点 (填M或N)能到达终点;
【1】求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
【1】是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,
说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):
星期
一
二
三
四
五
六
日
增减







(1)根据记录可知前三天共生产______辆.
(2)产量最多的一天比产量最少的一天多生产_______辆.
(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=3ax2+2bx+c,
(1)若a=3k,b=5k,c=k+1,试说明此类函数图象都具有的性质;
(2)若a=
, c=2+b且抛物线在﹣2≤x≤2区间上的最小值是﹣3,求b的值;(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】等边三角形ABC 中,BD是角平分线,点E在BC边的延长线上,且CD=CE,则∠BDE的度数是( )

A.90°B.100°C.120°D.无法确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2-2ax+b经过点C(0,-
),且与x轴交于点A、点B,若tan
ACO=
.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M,点P是线段OB上一动点(不与点B重合),
MPQ=45
,射线PQ与线段BM交于点Q,当△MPQ为等腰三角形时,求点P的坐标.
相关试题