【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a﹣2b+c>0;④2c<3b;⑤当m≤x≤m+1时,函数的最大值为a+b+c,则0≤m≤1;
其中正确的结论有( )![]()
A.1个
B.2个
C.3个
D.4个
参考答案:
【答案】B
【解析】解:①∵抛物线的对称轴为x=﹣
=1,
∴b=﹣2a.
∵抛物线开口向下,
∴a<0,b>0.
∵抛物线与y轴的交点在y轴正半轴,
∴c>0,
∴abc<0,结论①错误;
②当x=﹣1时,y=a﹣b+c<0,
∴a+c<b,结论②错误;
③当x=﹣2时,y=4a﹣2b+c<0,
∴结论③错误;
④∵a+c<b,b=﹣2a,
∴c<b﹣a=
b,
∴2c<3b,结论④正确;
⑤∵抛物线的顶点坐标为(1,a+b+c),且a<0,
∴当m≤x≤m+1时,函数的最大值为a+b+c,则0≤m≤1,
∴结论⑤正确.
综上所述:正确的结论有④⑤.
所以答案是:B.
【考点精析】根据题目的已知条件,利用二次函数图象以及系数a、b、c的关系和二次函数的最值的相关知识可以得到问题的答案,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c);如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E,F分别是AC,AB边上点,连接EF,将纸片ACB的一角沿EF折叠.
(1)如图①,若折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△AEF , 则AE=;
(2)如图②,若折叠后点A落在BC边上的点M处,且使MF∥CA.求AE的长;
(3)如图③,若折叠后点A落在BC延长线上的点N处,且使NF⊥AB.求AE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
与x轴、y轴分别交于点A,B,另一直线
与x轴、y轴分别交于点C,D,两直线相交于点M.
求点M的坐标;
连接AD,求△AMD的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程组解应用题
5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,BC=3
,AC=5,∠B=45°,对于下面四个结论:
①∠C一定是钝角; ②△ABC的外接圆半径为3;③sinA=
;④△ABC外接圆的外切正六边形的边长是
.其中正确的个数是( )
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为( )
A.x1=0,x2=4
B.x1=1,x2=5
C.x1=1,x2=﹣5
D.x1=﹣1,x2=5
相关试题