【题目】为了了解某校初三学生体能水平,体育老师从刚结束的“女生800米,男生1000米”体能测试成绩中随机抽取了一部分同学的成绩,按照“优秀、良好、合格、不合格”进行了统计,并绘制了下列不完整的统计图,![]()
请根据图中信息解答下列问题:
(1)体育老师总共选取了多少人的成绩?扇形统计图中“优秀”部分的圆心角度数是多少?
(2)把条形统计图补充完整;
(3)已知某校初三在校生有2500人,从统计情况分析,请你估算此次体能测试中达到“优秀”水平的大约有多少人?
参考答案:
【答案】
(1)
解:80÷40%=200人,
360°×
=108°,
∴体育老师总共选取了200人的成绩;扇形统计图中“优秀”部分的圆心角度数是108°
(2)
解:如图所示:
![]()
(3)
解:2500×
=750人,
答:此次体能测试中达到“优秀”水平的大约有750人
【解析】解: (2)中等的人数是:200﹣60﹣80﹣20=40人,补充条形统计图如图所示,![]()
【考点精析】关于本题考查的扇形统计图和条形统计图,需要了解能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况;能清楚地表示出每个项目的具体数目,但是不能清楚地表示出各个部分在总体中所占的百分比以及事物的变化情况才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在﹣3、﹣2、﹣1、0、1、2这六个数中,随机取出一个数,记为m,若数m使关于x的分式方程
﹣1=
的解是正实数或零,且使得的二次函数y=﹣x2+(2m﹣1)x+1的图象,在x>1时,y随x的增大而减小,则满足条件的所有m之和是( )
A.﹣2
B.﹣1
C.0
D.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人在1800米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,t(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与t函数关系.那么,乙到终点后秒与甲相遇.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,F为BC边上的中点,连接AF交对角线BD于G,在BD上截BE=BA,连接AE,将△ADE沿AD翻折得△ADE′,连接E′C交BD于H,若BG=2,则四边形AGHE′的面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)(2a﹣b)2﹣2b(b﹣2a)
(2)(x﹣
)÷
﹣
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y=
(m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM=
,OA=2. 
(1)求反比例函数和一次函数的解析式;
(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△BDE都是等腰直角三角形,其中∠ACB=∠BDE=90°,AC=BC,BD=ED,连接AE,点F是AE的中点,连接DF.
(1)如图1,若B、C、D共线,且AC=CD=2,求BF的长度;
(2)如图2,若A、C、F、E共线,连接CD,求证:DC=
DF. 
相关试题