【题目】某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.
(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?
(2)学校准备购进这两种型号的跳绳共50根,并且A型跳绳的数量不多于B型跳绳数量的3倍,请设计书最省钱的购买方案,并说明理由.
参考答案:
【答案】
(1)解:设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,
根据题意,得:
,
解得:
,
答:一根A型跳绳售价是10元,一根B型跳绳的售价是36元;
(2)解:设购进A型跳绳m根,总费用为W元,
根据题意,得:W=10m+36(50﹣m)=﹣26m+1800,
∵﹣26<0,
∴W随m的增大而减小,
又∵m≤3(50﹣m),解得:m≤37.5,
而m为正整数,
∴当m=37时,W最小=﹣2×37+350=276,
此时50﹣37=13,
答:当购买A型跳绳37只,B型跳绳13只时,最省钱.
【解析】(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,根据:“2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元”列方程组求解即可;(2)首先根据“A型跳绳的数量不多于B型跳绳数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型跳绳之间的关系得到函数解析式,确定函数的最值即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2017年3月全国两会胜利召开,某学校就两会期间出现频率最高的热词:A.蓝天保卫战,B.不动产保护,C.经济增速,D.简政放权等进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:

(1)本次调查中,一共调查了名同学;
(2)条形统计图中,m= , n=;
(3)从该校学生中随机抽取一个最关注热词D的学生的概率是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,AD是∠BAC的平分线.

(1)尺规作图:过点D作DE⊥AC于E;
(2)求DE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某地开辟一块长方形的荒地用于新建一个以环保为主题的公园.已知这块荒地的长是宽的2倍,它的面积为400 000 m2,那么:
(1)荒地的宽是多少?有1 000 m吗?(结果保留一位小数)
(2)如果要求结果保留整数,那么宽大约是多少?
(3)计划在该公园中心建一个圆形花圃,面积是800 m2,你能估计它的半径吗?(要求结果保留整数)
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于下列各组条件,不能判定△
≌△
的一组是 ( )A. ∠A=∠A′,∠B=∠B′,AB=A′B′
B. ∠A=∠A′,AB=A′B′,AC=A′C′
C. ∠A=∠A′,AB=A′B′,BC=B′C′
D. AB=A′B′,AC=A′C′,BC=B′C′
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=
(k>0)的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积为
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB.
(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;
(2)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.
(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.
相关试题