【题目】如图1,Rt△ACB 中,∠C=90°,点D在AC上,∠CBD=∠A,过A、D两点的圆的圆心O在AB上.
(1)利用直尺和圆规在图1中画出⊙O(不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);
(2)判断BD所在直线与(1)中所作的⊙O的位置关系,并证明你的结论;
(3)设⊙O交AB于点E,连接DE,过点E作EF⊥BC,F为垂足,若点D是线段AC的黄金分割点(即
),如图2,试说明四边形DEFC是正方形.
![]()
参考答案:
【答案】(1)作图见解析;(2)BD与⊙O相切;(3)证明见解析.
【解析】试题分析:(1)如图1,作线段AD的垂直平分线交AB于O,然后以点O为圆心,OA为半径作圆;
(2)连接OD,如图1,利用∠A=∠ODA、∠CBD=∠A得到∠CBD=∠ODA,则可证明∠ODB=90°,然后根据切线的判定方法可判断BD为⊙O的切线;
(3)先证明△CDB∽△CBA得到CB2=CDCA,再根据黄金分割的定义得到AD2=CDAC,则AD=CB,接着证明△ADE≌△BCD得到DE=DC,易得四边形CDEF为矩形,然后根据正方形的判定方法可判断四边形DEFC是正方形.
试题解析:解:(1)如图1,⊙O为所作;
![]()
(2)BD与⊙O相切.理由如下:
连接OD,如图1,∵OA=OD,∴∠A=∠ODA,∵∠CBD=∠A,∴∠CBD=∠ODA,∵∠C=90°,∴∠CBD+∠CDB=90°,∴∠ODA+∠CDB=90°,∴∠ODB=90°,∴OD⊥BD,∴BD为⊙O的切线;
(3)∵∠CBD=∠A,∠DCB=∠BCA,∴△CDB∽△CBA,∴CD:CB=CB:CA,∴CB2=CDCA,∵点D是线段AC的黄金分割点,∴AD2=CDAC,∵AD=CB,∵AE为直径,∴∠ADE=90°,在△ADE和△BCD中,∵∠A=∠CBD,AD=BC,∠ADE=∠C,∴△ADE≌△BCD,∴DE=DC,∵EF⊥BC,∴∠EFC=90°,∴四边形CDEF为矩形,∴四边形DEFC是正方形.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】若单项式﹣xa+1y2与5ybx2是同类项,那么a、b的值分别是( )
A.a=1,b=1B.a=1,b=2C.a=1,b=3D.a=2,b=2
-
科目: 来源: 题型:
查看答案和解析>>【题目】【回顾】
如图1,△ABC中,∠B=30°,AB=3,BC=4,则△ABC的面积等于 .
【探究】
图2是同学们熟悉的一副三角尺,一个含有30°的角,较短的直角边长为a;另一个含有45°的角,直角边长为b,小明用两副这样的三角尺拼成一个平行四边形ABCD(如图3),用了两种不同的方法计算它的面积,从而推出sin75°=
,小丽用两副这样的三角尺拼成了一个矩形EFGH(如图4),也推出sin75°=
,请你写出小明或小丽推出sin75°=
的具体说理过程.【应用】
在四边形ABCD中,AD∥BC,∠D=75°,BC=6,CD=5,AD=10(如图5).
(1)点E在AD上,设t=BE+CE,求t2的最小值;
(2)点F在AB上,将△BCF沿CF翻折,点B落在AD上的点G处,点G是AD的中点吗?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于y轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直写出D、E、F的坐标.D、E、F点的坐标是:D( , ) E( , ) F( , );
(2)求四边形ABED的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某天,一蔬菜经营户用120元钱按批发价从蔬菜批发市场买了西红柿和豆角共40kg,然后在市场上按零售价出售,西红柿和豆角当天的批发价和零售价如表所示:
品名
西红柿
豆角
批发价(单位:元/kg)
2.4
3.2
零售价(单位:元/kg)
3.8
5.2
如果西红柿和豆角全部以零售价售出,他当天卖这些西红柿和豆角赚了多少元钱?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解射击运动员小杰的集训效果,教练统计了他集训前后的两次测试成绩(每次测试射击10次),制作了如图所示的条形统计图.
(1)集训前小杰射击成绩的众数为 ;
(2)分别计算小杰集训前后射击的平均成绩;
(3)请用一句话评价小杰这次集训的效果.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴上,点B坐标为(4,t)(t>0),二次函数
(b<0)的图象经过点B,顶点为点D.(1)当t=12时,顶点D到x轴的距离等于 ;
(2)点E是二次函数
(b<0)的图象与x轴的一个公共点(点E与点O不重合),求OEEA的最大值及取得最大值时的二次函数表达式;(3)矩形OABC的对角线OB、AC交于点F,直线l平行于x轴,交二次函数
(b<0)的图象于点M、N,连接DM、DN,当△DMN≌△FOC时,求t的值.
相关试题