【题目】如图,ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△DEF的面积为1,则ABCD的面积等于 ![]()
参考答案:
【答案】4
【解析】∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,AD=BC,
∵AB∥CD,
∴∠A=∠EDF,
在△ABE和△DFE中,
,
∴△ABE≌△DFE(SAS),
∵△DEF的面积为1,
∴△ABE的面积为1,
∵AD∥BC,
∴△FBC∽△FED,
∴
=(
)2
∵AE=ED=
AD.
∴ED=
BC,
∴
=
,
∴四边形BCDE的面积为3,
∴ABCD的面积=四边形BCDE的面积+△ABE的面积=4.
所以答案是4.
【考点精析】利用平行四边形的性质对题目进行判断即可得到答案,需要熟知平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.

(1)函数y=ax2-2ax+a+3(a>0)的最小值为 , 当二次函数L1 , L2的y值同时随着x的增大而减小时,x的取值范围是
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).
(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程-a(x+1)2+1=0的解. -
科目: 来源: 题型:
查看答案和解析>>【题目】我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.

(1)特例探索
如图1,当∠ABE=45°,c=2
时,a= ,b= .
如图2,当∠ABE=30°,c=4时,a= ,b= .
(2)归纳证明
请你观察(1)中的计算结果,猜想a2 , b2 , c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.
(3)如图4,在ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2
,AB=3,求AF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,坐标原点O为矩形ABCD的对称中心,顶点A的坐标为(1,t),AB∥x轴,矩形A′B′C′D′与矩形ABCD是位似图形,点O为位似中心,点A′,B′分别是点A,B的对应点,
=k.已知关于x,y的二元一次方程
(m,n是实数)无解,在以m,n为坐标记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则kt的值等于( )
A.
B.1
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD=
,则∠ACD= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】写一个你喜欢的实数m的值 ,使得事件“对于二次函数
,当x<﹣3时,y随x的增大而减小”成为随机事件. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1 , 连接AC1 , BD1 . 如果四边形ABD1C1是矩形,那么平移的距离为 cm.

相关试题