【题目】探究并解决问题:
探究
倍延三角形的一条中线,我们可以发现一些有用的结论.
已知,如图①所示,AD为△ABC的中线,延长AD到E,使AD=DE,连接BE、CE.
(1)求证:AB∥CE.
![]()
(2)请再写出两条不同类型的结论.
解决问题
如图所示②,分别以△ABC的边AB和AC为边,向三角形的外侧作两个等腰直角三角形,AB=AD,AC=AE,∠BAD = ∠CAE=90°,点M为BC的中点,连接DE,AM,试问线段AM、DE之间存在什么关系?并说明理由.
参考答案:
【答案】探究(1)见解析;(2)见解析;解决问题:ED=2AM,AM⊥ED;证明见解析.
【解析】
探究(1)先证明四边形BEAC是平行四边形,即可完成;(2)根据(1)所得的平行四边形,写两条性质即可;解决问题:ED=2AM,AM⊥ED.延长AM到G,使MG=AM,连BG,则ABGC是平行四边形,再结合已知条件可以证明△DAE≌△ABG,根据全等三角形的性质可以得到DE=2AM,∠BAG=∠EDA,再延长MG交DE于H,因为∠B4G+∠DAH=90°,所以∠HDA+∠DAH=90°这样就证明了AMLED;
解:探究(1)∵AD为△ABC的中线,
∴BD=DC
又∵AD=DE
∴四边形ABEC是平行四边形
∴AB∥CE
(2)∵四边形ABEC是平行四边形
∴BE=AC,BE∥AC,∠BAC=∠BEC等写两个即可.
解决问题:
ED=2AM,AM⊥ED
![]()
证明:延长AM到G,使MG=AM,连BG,则ABGC是平行四边形,再延长M4交DE于H.
∴AC=BG,∠ABG+∠BAC=180°
又∵∠DAE+∠BAC=180°,
∴∠ABG=∠DAE.
∴△DAE≌△ABG
∴DE=2AM,∠BAG=∠EDA.
延长MA交DE于H,
∵∠BAG+∠DAH=90°,
∴∠HDA+∠DAH=90°.
AM⊥ED.
-
科目: 来源: 题型:
查看答案和解析>>【题目】叙述并证明三角形内角和定理.
三角形内角和定理: ;
已知:如图△ABC.
求证: .
证明:

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场计划购进A、B两种商品,若购进A种商品2件和B种商品1件需45元;若购进A种商品3件和B种商品2件需70元.
(1)A、B两种商品每件的进价分别是多少元?
(2)若购进A、B两种商品共100件,总费用不超过1000元,最多能购进A种商品多少件?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB∥CD,∠C=90°,AB=8,AD=CD=5,点M为BC上异于B、C的一定点,点N为AB上的一动点,E、F分别为DM、MN的中点,当N从A到B的运动过程中,线段EF扫过图形的面积为 ( )

A.4B.4.5C.5D.6
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的一元二次方程kx2-4x+2=0有实数根.
(1)求k的取值范围;
(2)若ABC中,AB=AC=2,AB、BC的长是方程kx2-4x+2=0的两根,求BC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“低碳环保,你我同行”.两年来,扬州市区的公共自行车给市民出行带来切实方便.电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况:A.每天都用;B.经常使用;C.偶尔使用;D.从未使用.将这次调查情况整理并绘制如下两幅统计图如图2:

根据图中的信息,解答下列问题:
(1)本次活动共有 位市民参与调查;
(2)补全条形统计图和扇形统计图;
(3)扇形统计图中A项所对应的圆心角的度数为
(4)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是 .

相关试题