【题目】一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.
(2)求支柱MN的长度.
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.
![]()
参考答案:
【答案】(1)y=-
x2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车.
【解析】试题分析:
根据题目可知
的坐标,设出抛物线的解析式代入可求解.
设
点的坐标为
可求出支柱
的长度.
设
是隔离带的宽,
是三辆车的宽度和.作
垂直
交抛物线于
,则可求解.
试题解析:
根据题目条件,
的坐标分别是![]()
将
的坐标代入
得
![]()
解得
所以抛物线的表达式是
可设
,于是
从而支柱
的长度是
米.
设
是隔离带的宽,
是三辆车的宽度和,则
点坐标是![]()
![]()
过
点作
垂直
交抛物线于
,则![]()
根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:
解答“已知
,且
,
,确定
的取值范围”有如下解,解:∵
,∴
.又∵
,∴
.∴
.又∵
,∴
,
①同理得:
.
②由①
②得
.∴
的取值范围是
.请按照上述方法,完成下列问题:
(
)已知
,且
,
,求
的取值范围.(
)已知
,
,若
,且
,求
得取值范围(结果用含
的式子表示). -
科目: 来源: 题型:
查看答案和解析>>【题目】在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.

(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若点(m,n)在函数y=2x-6的图象上,则2m﹣n的值是__________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,天星山山脚下西端A处与东端B处相距800(1+
)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为
米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.
(1)请补画出它的俯视图,并标出相关数据;
(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,某超市从一楼到二楼有一自动扶梯,图②是侧面示意图.已知自动扶梯AB的坡度为1∶2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)( )

A. 10.8米 B. 8.9米 C. 8.0米 D. 5.8米
相关试题