【题目】如图:在矩形ABCD中,AD=
AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,有下列结论:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;⑤AB=FH.其中正确的结论有( )
![]()
A. 5个 B. 4个 C. 3个 D. 2个
参考答案:
【答案】B
【解析】分析: 先证明△ABE和△ADH是等腰直角三角形,得出AD=AE,AB=AH=DH=DC,得出∠ADE=∠AED,即可得出①正确;先证出OE=OH,同理:OD=OH,得出OE=OD,②正确;由ASA证出△BEH≌△HDF,得出③正确;过H作HK⊥BC于K,可知
,HK=KE,得出
,BC=2HK+2HE=FC+2HE得出④正确.
详解: ∵四边形ABCD是矩形,
∴
AB=DC,AD∥BC,
∴∠ADE=∠CED,
∵∠BAD的平分线交BC于点E,
∴
∴△ABE和△ADH是等腰直角三角形,
∴
∵
∴AD=AE,AB=AH=DH=DC,
∴∠ADE=∠AED,
∴∠AED=∠CED,
∴①正确;
∵
∴
,
∵
∴
,
∴
,
∴∠OHE=∠AED,
∴OE=OH,
同理:OD=OH,
∴OE=OD,
∴②正确;
∵
∴∠HBE=∠FHD,
在△BEH和△HDF中,
∴△BEH≌△HDF(ASA),
∴③正确;
BCCF=2HE正确,过H作HK⊥BC于K,
可知
,HK=KE,
由上知HE=EC,
∴
,
又
,HEEC,
故
,BC=2HK+2HE=FC+2HE
∴④正确;
⑤不正确;
故选B.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读并解决问题:归纳
人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有3个顶点,如果在它的内部再画n个点,并以(n+3)个点为顶点,把三角形剪成若干个小三角形,那么最多可以剪得多少个这样的三角形? .为了解决这个问题,我们可以从n=1、n=2、nr=3 等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.

(1)完成表格信息:_______、_________;
(2)通过观察、比较,可以发现:三角形内的点每增加1个,最多可以剪得的三角形增加_________个.于是,我们可以猜想:当三角形内的点的个数为n时,最多可以剪得____________个三角形.像这样通过对现象的观察、分析,从特殊到-般地探索这类现象的规律、提出猜想的思想方法称为归纳.在日常生活中,人们互相交谈时,常常有人在列举了一些现象后,说“这(即列举的现象)说明....其实这就是运用了归纳的方法.用归纳的方法得出的结论不一定正确,是否正确需要加以证实.
(3)请你借助表格尝试用归纳的方法探索: 1+3+5+7+......+(2n-1)的和是多少?并加以证实.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程
(米)与甲出发的时间
(分钟)之间的关系如图所示,下列说法错误的是( )
A.甲的速度是70米/分B.乙的速度是60米/分
C.甲距离景点2100米D.乙距离景点420米
-
科目: 来源: 题型:
查看答案和解析>>【题目】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图所示的方式进行拼接.
(1)若把4张这样的餐桌拼接起来,四周可坐 人;
(2)若把n张这样的餐桌拼接起来,四周可坐 人;
(3)若把9张这样的餐桌拼接起来,四周可坐 人;
(4)若用餐的人数有50人,则这样的餐桌需要多少张?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,
,点
是直线
、
之间的一点,连接
、
.
(1)问题发现:
①若
,
,则
___________.②猜想图1中
、
、
的数量关系,并证明你的结论.(2)拓展应用:
如图2,
,线段
把
这个封闭区域分为Ⅰ、Ⅱ两部分(不含边界),点
是位于这两个区域内的任意一点,请直接写出
、
、
的数量关系. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛,成绩如图所示:

(1)根据图示填写下表;
班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
九(2)
85
100
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)已知九(1)班复赛成绩的方差是70,请计算九(2)班的复赛成绩的方差,并说明哪个班的成绩比较稳定?
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着气温的升高,空调的需求量大增.某家电超市对每台进价分别为2000元、1700元的
、
两种型号的空调,近两周的销售情况统计如下:销售时段
销售量
销售收入
型号
型号第一周
6台
7台
31000元
第二周
8台
11台
45000元
(1)求
、
两种型号的空调的销售价;(2)若该家电超市准备用不多于54000元的资金,采购这两种型号的空调30台,求
种型号的空调最多能采购多少台?(3)在(2)的条件下,该家电超市售完这30台空调能否实现利润不低于15800元的目标?若能,请给出采购方案.若不能,请说明理由.
相关试题