【题目】如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数 ![]()
参考答案:
【答案】150°
【解析】解:连接PQ,由题意可知△ABP≌△CBQ 则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,
∵△ABC是等边三角形,
∴∠ABC=∠ABP+∠PBC=60°,
∴∠PBQ=∠CBQ+∠PBC=60°,
∴△BPQ为等边三角形,
∴PQ=PB=BQ=4,
又∵PQ=4,PC=5,QC=3,
∴PQ2+QC2=PC2 ,
∴∠PQC=90°,
∵△BPQ为等边三角形,
∴∠BQP=60°,
∴∠BQC=∠BQP+∠PQC=150°
∴∠APB=∠BQC=150°![]()
首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列结论中正确的是( )
A. 三角形的一个外角大于这个三角形的任何一个内角
B. 三角形按边分类可以分为:不等边三角形、等腰三角形、等边三角形
C. 三角形的三个内角中,最多有一个钝角
D. 若三条线段
、
、
,满足
,则此三条线段一定能组成三角形 -
科目: 来源: 题型:
查看答案和解析>>【题目】若二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是( )

A. ① B. ② C. ①② D. ①②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线y=m是平行于x轴的直线,将抛物线y=﹣
x2﹣4x在直线y=m上侧的部分沿直线y=m翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与直线y=﹣x有3个交点,则满足条件的m的值为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中错误的是( )
A. 在△ABC中,∠C=∠A-∠B,则△ABC为直角三角形
B. 在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则△ABC为直角三角形
C. 在△ABC中,若a=
c,b=
c,则△ABC为直角三角形D. 在△ABC中,若a∶b∶c=2∶2∶4,则△ABC为直角三角形
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,弦CD⊥AB于E,∠CDB=15°,OE=2
. 
(1)求⊙O的半径;
(2)将△OBD绕O点旋转,使弦BD的一个端点与弦AC的一个端点重合,则弦BD与弦AC的夹角为 .
相关试题