【题目】如图,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求证:AC⊥平面ABB1A1
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.


参考答案:

【答案】解:证明:(Ⅰ)∵在底面ABCD中,AB=1,AC= ,BC=2, ∴AB2+AC2=BC2 , ∴AB⊥AC,
∵侧棱AA1⊥底面ABCD,∴AA1⊥AC,
又∵AA1∩AB=A,AA1 , AB平面ABB1A1
∴AC⊥平面ABB1A1
解:(Ⅱ)过点C作CP⊥C1D于P,连接AP,
由(Ⅰ)可知,AC⊥平面DCC1D1
∠CPA是二面角A﹣C1D﹣C的平面角,
∵CC1=BB1=2,CD=AB=1,∴CP= = =
∴tan = ,∴cos
∴二面角A﹣C1D﹣C的平面角的余弦值为

【解析】(Ⅰ)推导出AB⊥AC,AA1⊥AC,由此能证明AC⊥平面ABB1A1 . (Ⅱ)过点C作CP⊥C1D于P,连接AP,则AC⊥平面DCC1D1 , 从而∠CPA是二面角A﹣C1D﹣C的平面角,由此能求出二面角A﹣C1D﹣C的平面角的余弦值.

关闭