【题目】如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
![]()
参考答案:
【答案】(1)B(3,0),C(0,3);(2)△CDB为直角三角形;(3)S=
.
【解析】试题分析:(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标;
(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形;
(3)△COB沿x轴向右平移过程中,分两个阶段:
(I)当0<t≤
时,如答图2所示,此时重叠部分为一个四边形;
(II)当
<t<3时,如答图3所示,此时重叠部分为一个三角形.
试题解析:(1)∵点A(﹣1,0)在抛物线y=﹣(x﹣1)2+c上,
∴0=﹣(﹣1﹣1)2+c,得c=4,
∴抛物线解析式为:y=﹣(x﹣1)2+4,
令x=0,得y=3,
∴C(0,3);
令y=0,得x=﹣1或x=3,
∴B(3,0).
(2)△CDB为直角三角形.
理由如下:由抛物线解析式,得顶点D的坐标为(1,4).
如答图1所示,
![]()
过点D作DM⊥x轴于点M,则OM=1,DM=4,BM=OB﹣OM=2.
过点C作CN⊥DM于点N,则CN=1,DN=DM﹣MN=DM﹣OC=1.
在Rt△OBC中,由勾股定理得:BC=
;
在Rt△CND中,由勾股定理得:CD=
;
在Rt△BMD中,由勾股定理得:BD=
.
∵BC2+CD2=BD2,∴△CDB为直角三角形(勾股定理的逆定理).
(3)设直线BC的解析式为y=kx+b,
∵B(3,0),C(0,3),
∴
,
解得k=﹣1,b=3,
∴y=﹣x+3,直线QE是直线BC向右平移t个单位得到,
∴直线QE的解析式为:y=﹣(x﹣t)+3=﹣x+3+t;
设直线BD的解析式为y=mx+m,
∵B(3,0),D(1,4),
∴
,
解得:m=﹣2,n=6,
∴y=﹣2x+6.连接CQ并延长,射线CQ交BD于点G,则G(1.5,3).
在△COB向右平移的过程中:
(I)当0<t≤1.5时,如答图2所示:设PQ与BC交于点K,可得QK=CQ=t,PB=PK=3﹣t.
![]()
设QE与BD的交点为F,则:
,
解得
,
∴F(3﹣t,2t).
S=S△QPE﹣S△PBK﹣S△FBE=0.5PEPQ=0.5PBPK=0.5BEyF==0.5×3×3=0.5(3﹣t)2=0.5t2t=-1.5t2+3t;
(II)当1.5<t<3时,如答图3所示:设PQ分别与BC、BD交于点K、点J.
![]()
∵CQ=t,∴KQ=t,PK=PB=3﹣t.直线BD解析式为y=﹣2x+6,
令x=t,得y=6﹣2t,
∴J(t,6﹣2t).
S=S△PBJ﹣S△PBK=0.5PBPJ﹣0.5PBPK=0.5(3﹣t)(6﹣2t)﹣0.5(3﹣t)2=0.5t2﹣3t+4.5.
综上所述,S与t的函数关系式为:S=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】悠悠食品店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售的总份数不变,这两种菜品一天的总利润是316元.求A种菜品每天销售多少份?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果精确到0.1 m)(参考数据:
≈1.414,、
≈1.732)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系中,已知点A,B的坐标是(a,0),(b,0).a,b满足方程组
,C为y轴正半轴上一点,且S△ABC=6.(1)求A,B,C三点的坐标;
(2)是否存在点P(t,t),使S△PAB=
S△ABC?若存在,请求出P点的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个点在第一象限及
轴、
轴上运动,在第一秒钟,它从原点
运动到
,然后接着按图中箭头所示方向运动,即
→
→
→
,…,且每秒移动一个单位,到
用时2秒,到
点用时6秒,到
点用时12秒,…,那么到
点用时________秒,第931秒时这个点所在位置坐标是_________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,点
、
、
均在格点上.
(1)请直接写出点
、
、
的坐标分别为_________,_________,_________.(2)若平移线段
,使
移动到
的位置,请在图中画出
移动后的位置
,依次连接
,
,
,
,则四边形
的面积为________. -
科目: 来源: 题型:
查看答案和解析>>【题目】数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则”.
材料一:平方运算和开方运算是互逆运算.如a2±2ab+b2=(a±b)2,那么
,如何将双重二次根式
化简.我们可以把
转化为
完全平方的形式,因此双重二次根式
得以化简.材料二:在直角坐标系xOy中,对于点P(x,y)和Q(x,y’)给出如下定义:若
则称点Q为点P的“横负纵变点”.例如:点(3,2)的“横负纵变点”为(3,2),点(﹣2,5)的“横负纵变点”为(﹣2,﹣5).问题:(1)点
的“横负纵变点”为 ,点
的“横负纵变点”为 ;(2)化简:
;(3)已知a为常数(1≤a≤2),点M(
,m)是关于x的函数
图像上的一点,点M’是点M的“横负纵变点”,求点M’的坐标.
相关试题