【题目】悠悠食品店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售的总份数不变,这两种菜品一天的总利润是316元.求A种菜品每天销售多少份?
参考答案:
【答案】(1)该店每天卖出这两种菜品共60份;(2)A种菜品每天销售26份
【解析】
(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;
(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜多卖出的份数的函数关系式即可得出结论.
解:(1)设该店每天卖出A、B两种菜品分别为x份、y份,根据题意得,
解得:
∴两种菜品一共卖出:20+40=60(份)
答:该店每天卖出这两种菜品共60份.
(2)设A种菜品售价降0.5a元,即每天卖(20+a)份;则B种菜品卖(40a)份
每份售价提高0.5a元.
(20140.5a)(20+a)+(1814+0.5a)(40a)=316
即a2-12a+36=0
a1=a2=6
答:A种菜品每天销售26份.
-
科目: 来源: 题型:
查看答案和解析>>【题目】科技馆是少年儿童节假日游玩的乐园.
如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=
,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;
(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A2 019的坐标为________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在大课间活动中,同学们积极参加体育锻炼。小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,根据图中提供的信息,解答下列各题:

(1)本次调查共抽取了多少名学生?
(2)补全频数分布直方图;
(3)若全校共有1200名学生,跳绳成绩为优秀的约有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果精确到0.1 m)(参考数据:
≈1.414,、
≈1.732)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系中,已知点A,B的坐标是(a,0),(b,0).a,b满足方程组
,C为y轴正半轴上一点,且S△ABC=6.(1)求A,B,C三点的坐标;
(2)是否存在点P(t,t),使S△PAB=
S△ABC?若存在,请求出P点的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

相关试题