【题目】已知二次函数的图象经过点(0,﹣3),(2,5),(﹣1,﹣4)且与x轴交于A、B两点,其顶点为P. ![]()
(1)试确定此二次函数的解析式;
(2)根据函数的图象,指出函数的增减性,并直接写出函数值y<0时自变量x的取值范围.
(3)求△ABP的面积.
参考答案:
【答案】
(1)解:设此二次函数的解析式为:y=ax2+bx+c,
∵二次函数的图象经过点(0,﹣3),(2,5),(﹣1,﹣4),
∴
,
解得a=1,b=2,c=﹣3,
∴此二次函数的解析式是:y=x2+2x﹣3
(2)解:∵y=x2+2x﹣3=(x+1)2﹣4,点P为此二次函数的顶点坐标,
∴点P的坐标为(﹣1,﹣4),
当x<﹣1时,y随x的增大而减小;
当x>﹣1时,y随x的增大而增大,
将y=0代入y=x2+2x﹣3得,x1=﹣3,x2=1,
∴点A的坐标为(﹣3,0),点B的坐标为(1,0)
∴函数值y<0时自变量x的取值范围是:﹣3<x<1
(3)解:∵点A的坐标为(﹣3,0),点B的坐标为(1,0),顶点P的坐标为(﹣1,﹣4),
∴△DEF的面积=
×4×4=8
【解析】(1)根据二次函数的图象经过点(0,﹣3),(2,5),(﹣1,﹣4),可以求得此二次函数的解析式;(2)首先根据第(1)问中求得的函数解析式可化为顶点式,从而可以得到顶点P的坐标,再令y=0代入求得的函数解析式可以求得点A和点B的坐标,从而可以得到函数值y<0时自变量x的取值范围,由顶点P的坐标和函数图象可以得到函数的增减性;(3)由(2)可知点A的坐标为(﹣3,0),点B的坐标为(1,0),顶点P的坐标为(﹣1,﹣4),所以AB的长可求出,△ABP边AB的高即为点P的纵坐标的绝对值,利用三角形面积公式计算即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在平面直角坐标系xOy中,O是坐标原点,直线l:y=
x,点A1坐标为(4,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2为半径画弧交x轴正半轴于点A3……按此做法进行下去,点A2 017的横坐标为_____________
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016甘肃省白银市)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某农户种植一种经济作物,总用水量y(m3)与种植时间x(天)之间的函数关系如图所示.
(1)第20天的总用水量为 m3;
(2)当x≥20时,求y与x之间的函数表达式;
(3)种植时间为多少天时,总用水量达到7 000 m3.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将边长为2的正方形OABC如图放置,O为原点.若∠α=15°,则点B的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校计划一次性购买排球和篮球,每个篮球的价格比排球贵30元;购买2个排球和3个篮球共需340元.
(1)求每个排球和篮球的价格:
(2)若该校一次性购买排球和篮球共60个,总费用不超过3800元,且购买排球的个数少于39个.设排球的个数为m,总费用为y元.
①求y关于m的函数关系式,并求m可取的所有值;
②在学校按怎样的方案购买时,费用最低?最低费用为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为 .

相关试题