【题目】如图是学习“分式方程应用”时,老师板书的例题和两名同学所列的方程.
15.3分式方程
例:有甲、乙两个工程队,甲队修路
米与乙队修路
米所用时间相等.乙队每天比甲队多修
米,求甲队每天修路的长度.
冰冰:![]()
庆庆:![]()
根据以上信息,解答下列问题:
(1)冰冰同学所列方程中的
表示_____,庆庆同学所列方 程中的
表示;
(2)两个方程中任选一个,写出它的等量关系;
(3)解(2)中你所选择的方程,并解答老师的例题.
参考答案:
【答案】(1)甲队每天修路的长度;甲队修
米路所需时间(或乙队修
米路所需时间);(2)冰冰用的等量关系是:甲队修路
米所用时间=乙队修路
米所用时间;庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度
米(选择一个即可);(3)①选冰冰的方程
,甲队每天修路的长度为
米;②选庆庆的方程
.甲队每天修路的长度为
米.
【解析】
(1)根据题意分析即可;(2)从时间关系或修路长度关系进行分析即可;(3)解分式方程即可.
(1)根据题意可得:冰冰同学所列方程中的
表示:甲队每天修路的长度;
庆庆同学所列方程中的
表示:甲队修
米路所需时间(或乙队修
米路所需时间).
(2)冰冰用的等量关系是:甲队修路
米所用时间=乙队修路
米所用时间;
庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度
米
(选择-一个即可)
解:(3)①选冰冰的方程![]()
去分母,得![]()
解得![]()
经检验
是原分式方程的解.
答:甲队每天修路的长度为
米.
②选庆庆的方程
.
去分母,得
.
解得![]()
经检验
是原分式方程的解.
所以![]()
答:甲队每天修路的长度为
米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算△ABC的周长等于_____.
(2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
___________________________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:

(1)本次随机抽样调查的学生人数为______,图①中的m的值为______;
(2)求本次抽样调查获取的样本数据的众数、中位数和平均数;
(3)若该校九年级共有学生300人,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作
,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交
于点M,N;(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是( )

A. ∠COM=∠CODB. 若OM=MN,则∠AOB=20°
C. MN∥CDD. MN=3CD
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数学活动课上,李老师让同学们试着用角尺平分
(如图所示),有两组.
同学设计了如下方案:
方案①:将角尺的直角顶点
介于射线
之间,移动角尺使角尺两边相同的刻度位于
上,且交点分别为
,即
,过角尺顶点
的射线
就是
的平分线.方案②:在边
上分别截取
,将角尺的直角顶点
介于射线
之间,移动角尺使角尺两边相同的刻度与点
重合,即
,过角尺顶点
的射线
就是
的平分线.请分别说明方案①与方案②是否可行?若可行,请证明; 若不可行,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知PA、PB是⊙O的切线,A、B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.
(1)如图①,若∠AOP=65°,求∠C的大小;
(2)如图②,连接BD,若BD∥AC,求∠C的大小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】综合与探究
[问题]如图1,在
中,
,过点
作直线
平行于
,点
在直线
上移动,角的一边DE始终经过点
,另一边
与
交于点
,研究
和
的数量关系.
[探究发现]
(1)如图2,某数学学习小组运用“从特殊到一般”的数学思想,发现当点
移动到使点
与点
重合时,很容易就可以得到
请写出证明过程;[数学思考]

(2)如图3,若点
是
上的任意一点(不含端点
),受(1)的启发,另一个学习小组过点
,
交
于点
,就可以证明
,请完成证明过程;[拓展引申]
(3)若点
是
延长线上的任意一点,在图(4)中补充完整图形,并判断结论是否仍然成立.
相关试题