【题目】如图,在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=
,下列结论:①△APD≌△AEB;②EB⊥ED;③PD=
,其中正确结论的序号是( )
![]()
A. ①② B. ①③ C. ②③ D. ①②③
参考答案:
【答案】A
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;③在Rt△AEP中,利用勾股定理,可求得EP、BE的长,再依据△APD≌△AEB,即可得出PD=BE,据此即可判断.
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∴△APD≌△AEB,故①正确;
②∵△APD≌△AEB,
∴∠APD=∠AEB,
又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED,故②正确;
③在Rt△AEP中,
∵AE=AP=1,
∴EP=
,
又∵PB=
,
∴BE=
,
∵△APD≌△AEB,
∴PD=BE=
,故③错误,
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=nAD,点E,F分别在边AB,AD上且不与顶点A,B,D重合,∠AEF=∠BCE,圈O过A,E,F三点.

(1)求证:圈O与CE相切与点E;
(2)如图1,若AF=2FD且∠AEF=30°,求n的值;
(3)如图2.若EF=EC且圈O与边CD相切,求n的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若∠AOB=100°,∠BOD=60°,∠AOC=70°时,则∠COD=_____°(自己画图并计算)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店在节日期间开展优惠促销活动:购买原价超过200元的商品,超过200元的部分可以享受打折优惠,若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过200元的部分可以享受的优惠是( )

A. 打五折 B. 打六折 C. 打七折 D. 打八折
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.

(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AO=CO.
-
科目: 来源: 题型:
查看答案和解析>>【题目】按如下规律摆放五角星:若按上面的规律继续摆放,第_____个图案恰好含有2017个五角星?

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:

(1)求被抽样调查的学生有多少人?并补全条形统计图;
(2)每天户外活动时间的中位数是 小时?
(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?
相关试题