【题目】已知:线段AB,BC.
求作:平行四边形ABCD.
以下是甲、乙两同学的作业.
甲:
①以点C为圆心,AB长为半径作弧;
②以点A为圆心,BC长为半径作弧;
③两弧在BC上方交于点D,连接AD,CD.
四边形ABCD即为所求平行四边形.(如图1)
乙:
①连接AC,作线段AC的垂直平分线,交AC于点M;
②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.
四边形ABCD即为所求平行四边形.(如图2)
![]()
老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.
参考答案:
【答案】乙 对角线互相平分的四边形是平行四边形
【解析】
根据平行四边形的判定方法,即可解决问题.
根据平行四边形的判定方法,我更喜欢乙的作法,他的作图依据是:对角线互相平分的四边形是平行四边形.
故答案为:乙;对角线互相平分的四边形是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E,F分别是AD,BC边上的点,AE=CF,∠EFB=45°,若AB=5,BC=13,则AE的长为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低 ( )

A. 星期二B. 星期四C. 星期六D. 星期五
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=-
x2+
x-2与x轴相交于点A、B,与y轴相交于点C.(1)求证:△AOC∽△COB;
(2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上也以每秒1个单位的速度由D向C运动,则经过几秒后,PQ=AC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程
已知:直线l及直线l外一点P.

求作:直线PQ,使得PQ∥l.
作法:如图,

①在直线l上取一点A,作射线AP,以点P为圆心,PA长为半径画弧,交AP的
延长线于点B;
②以点B为圆心,BA长为半径画弧,交l于点C(不与点A重合),连接BC;
③以点B为圆心,BP长为半径画孤,交BC于点Q;
④作直线PQ.
所以直线PQ就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明
证明:∵PB=PA,BC= ,BQ=PB,
∴PB=PA=BQ= .
∴PQ∥l( )(填推理的依据).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.
已知:如图,在RtΔABC中,∠ABC=90°,0为AC的中点.

求作:四边形ABCD,使得四边形ABCD为矩形.
作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO;
②连接AD,CD,则四边形ABCD为矩形.
根据小丁设计的尺规作图过程.
(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:∴点O为AC的中点,
∴AO=CO.
又∵DO=BO,
∵四边形ABCD为平行四边形(__________)(填推理的依据).
∵∠ABC=90°,
∴
ABCD为矩形(_________)(填推理的依据). -
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=x2+bx+c与y=x的图象如图所示,有以下结论:
①b2﹣4c>0;②b+c=0;③2b+c+3=0;④当1<x<3时,x2+(b﹣1)x+c<0
其中正确的有( )个.

A. 4 B. 3 C. 2 D. 1
相关试题