【题目】已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣4=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为正整数,且该方程的两个根都是整数,求m的值.
参考答案:
【答案】(1)
;(2)![]()
【解析】
(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于m的不等式,求出不等式的解集即可得到m的范围;
(2)由m为正整数,可得出m=1、2,将m=1或m=2代入原方程求出x的值,由该方程的两个根都是整数,即可确定m的值,
解:
(1)∵一元二次方程x2+2(m﹣1)x+m2﹣4=0有两个不相等的实数根,
∴![]()
∴
;
(2)∵m为正整数,
∴m=1或2,
当m=1时,方程为:x2﹣3=0,解得:
(不是整数,不符合题意,舍去),
当m=2时,方程为:x2+2x=0,解得:
都是整数,符合题意,
综上所述:m=2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:
请根据图中信息,解答下列问题:
(1)该调查的样本容量为________,
=________%,
=________%,“常常”对应扇形的圆心角的度数为__________;(2)请你补全条形统计图;
(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的
学生有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带
个学生,还剩
个学生没人带;若每位老师带
个学生,就有一位老师少带
个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有
名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.
(1)参加此次研学旅行活动的老师有 人;学生有 人;租用客车总数为 辆;
(2)设租用
辆乙种客车,租车费用为
元,请写出
与
之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过
元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】对平面直角坐标系中的点P(x,y),定义d=|x|+|y|,我们称d为P(x,y)的幸福指数.对于函数图象上任意一点P(x,y),若它的幸福指数d≥1恒成立,则称此函数为幸福函数,如二次函数y=x2+1就是一个幸福函数,理由如下:设P(x,y)为y=x2+1上任意一点,d=|x|+|y|=|x|+|x2+1|,∵|x|≥0,|x2+1|=x2+1≥1,∴d≥1.∴y=x2+1是一个幸福函数.
(1)若点P在反比例函数y=
的图象上,且它的幸福指数d=2,请直接写出所有满足条件的P点坐标;(2)一次函数y=﹣x+1是幸福函数吗?请判断并说明理由;
(3)若二次函数y=x2﹣(2m+1)x+m2+m(m>0)是幸福函数,试求出m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,直线y=
x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知反比例函数
的图像与一次函数
的图像的一个交点的横坐标是-3.(1)求
的值,并在指定坐标系中画出这两个函数的图像;(2)根据图像,直接写出使一次函数值大于反比例函数值时x的取值范围 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③S△ABF:S四边形CDEF=2:5;④cos∠CAD=
.其中正确的结论有( ).
A. 4个 B. 3个 C. 2个 D. 1个
相关试题