【题目】如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.
解决问题
(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;
(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出
的值(用含α的式子表示出来)
![]()
参考答案:
【答案】(1) BF=CD.证明见解析;(2)(1)中的结论不成立.理由见解析;(3)
=tan
.
【解析】
试题分析:(1)如答图②所示,连接OC、OD,证明△BOF≌△COD;
(2)如答图③所示,连接OC、OD,证明△BOF∽△COD,相似比为
;
(3)如答图④所示,连接OC、OD,证明△BOF∽△COD,相似比为tan
.
试题解析:(1)猜想:BF=CD.理由如下:
如答图②所示,连接OC、OD.
![]()
∵△ABC为等腰直角三角形,点O为斜边AB的中点,
∴OB=OC,∠BOC=90°.
∵△DEF为等腰直角三角形,点O为斜边EF的中点,
∴OF=OD,∠DOF=90°.
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
∵在△BOF与△COD中,
![]()
∴△BOF≌△COD(SAS),
∴BF=CD.
(2)答:(1)中的结论不成立.
如答图③所示,连接OC、OD.
![]()
∵△ABC为等边三角形,点O为边AB的中点,
∴
=tan30°=
,∠BOC=90°.
∵△DEF为等边三角形,点O为边EF的中点,
∴
=tan30°=
,∠DOF=90°.
∴
.
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
在△BOF与△COD中,
∵
,∠BOF=∠COD,
∴△BOF∽△COD,
∴![]()
(3)如答图④所示,连接OC、OD.
![]()
∵△ABC为等腰三角形,点O为底边AB的中点,
∴
=tan
,∠BOC=90°.
∵△DEF为等腰三角形,点O为底边EF的中点,
∴
=tan
,∠DOF=90°.
∴
=
=tan![]()
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
在△BOF与△COD中,
∵
=
=tan
,∠BOF=∠COD,
∴△BOF∽△COD,
∴
=tan
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各组图形一定相似的是( )
A.所有的等腰三角形都相似B.所有的等边三角形都相似
C.所有的菱形都相似D.所有的矩形都相似
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学习小组对所在城区初中学生的视力情况进行抽样调查,如图是这些同学根据调查结果画出的条形统计图如图所示,则下列说法中不正确的是( )

A.本次抽查活动共抽查了2100名学生
B.本次抽查活动中视力不低于4.8的学生人数占总人数的66.7%
C.本次抽查活动中视力不低于4.8学生人数中的极差为300人
D.由活动结果可以知道随着年级的增长,视力低于4.8的人数越来越多,呈上升趋势,那么同年级中抽到视力不低于4.8的学生的概率将越来越小 -
科目: 来源: 题型:
查看答案和解析>>【题目】小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?



(1)请你帮他们解答,并说明理由.
(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)
(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(
取1.73)(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1x2等于( )
A. ﹣4 B. ﹣1 C. 1 D. 4
相关试题