【题目】如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(
取1.73)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.
![]()
参考答案:
【答案】(1)楼房的高度约为17.3米.(2)小猫仍可晒到太阳.理由见解析.
【解析】试题分析:(1)在Rt△ABE中,根据
的正切值即可求得楼高;(2)当
时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.
试题解析:解:(1)当当
时,在Rt△ABE中,
∵
,
∴BA=10tan60°=
米.
即楼房的高度约为17.3米.
![]()
当
时,小猫仍可晒到太阳.理由如下:
假设没有台阶,当
时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.
∵∠BFA=45°,
∴
,此时的影长AF=BA=17.3米,
所以CF=AF-AC=17.3-17.2=0.1.
∴CH=CF=0.1米,
∴大楼的影子落在台阶MC这个侧面上.
∴小猫仍可晒到太阳.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学习小组对所在城区初中学生的视力情况进行抽样调查,如图是这些同学根据调查结果画出的条形统计图如图所示,则下列说法中不正确的是( )

A.本次抽查活动共抽查了2100名学生
B.本次抽查活动中视力不低于4.8的学生人数占总人数的66.7%
C.本次抽查活动中视力不低于4.8学生人数中的极差为300人
D.由活动结果可以知道随着年级的增长,视力低于4.8的人数越来越多,呈上升趋势,那么同年级中抽到视力不低于4.8的学生的概率将越来越小 -
科目: 来源: 题型:
查看答案和解析>>【题目】小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?



(1)请你帮他们解答,并说明理由.
(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)
(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.
解决问题
(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;
(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出
的值(用含α的式子表示出来)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1x2等于( )
A. ﹣4 B. ﹣1 C. 1 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中不正确的是( )
A. 一个数与它的倒数之积是1 B. 商为-1的两个数互为相反数
C. 一个数与它的相反数之商一定为-1 D. 积为1的两个数互为倒数
相关试题