【题目】下表是小华同学一个学期数学成绩的记录.根据表格提供的信息,回答下列的问题:
考试类别 | 平时考试 | 期中考试 | 期末考试 | |||
第一单元 | 第二单元 | 第三单元 | 第四单元 | |||
成绩(分) | 85 | 78 | 90 | 91 | 90 | 94 |
(1)小明6次成绩的众数是 ,中位数是 ;
(2)求该同学这个同学这一学期平时成绩的平均数;
(3)总评成绩权重规定如下:平时成绩占20%,期中成绩占30%,期末成绩占50%,请计算出小华同学这一个学期的总评成绩是多少分?
参考答案:
【答案】(1)90分;90分;(2)86分;(3)91.2分.
【解析】
(1)根据众数和中位数的定义计算即可;
(2)根据平均数的定义计算即可;
(3)根据加权平均数公式计算即可.
解:(1)将小明6次成绩从小到大重新排列为:78、85、90、90、91、94,
所以小明6次成绩的众数是90分、中位数为
=90分,
故答案为:90分、90分;
(2)该同学这个同学这一学期平时成绩的平均数为
=86分;
(3)小华同学这一个学期的总评成绩是86×20%+90×30%+94×50%=91.2(分).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:关于x的一元二次方程tx2﹣(3t+2)x+2t+2=0(t>0)
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1 , x2(其中x1<x2),若y是关于t的函数,且y=x2﹣2x1 , 求这个函数的解析式,并画出函数图象;
(3)观察(2)中的函数图象,当y≥2t时,写出自变量t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.
(1)求线段AD的长;
(2)求△ABC的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点P为BC的中点,连接EP,AD.

(1)求证:PE是⊙O的切线;
(2)若⊙O的半径为3,∠B=30°,求P点到直线AD的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:在Rt△ABC中,斜边AB=10,sinA=
,点P为边AB上一动点(不与A,B重合),PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.
(1)当AP=CP时,求QP;
(2)若四边形PMQN为菱形,求CQ;
(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A(﹣3,0),二次函数y=ax2+bx+
的对称轴为直线x=﹣1,其图象过点A与x轴交于另一点B,与y轴交于点C.
(1)求二次函数的解析式,写出顶点坐标;
(2)动点M,N同时从B点出发,均以每秒2个三位长度的速度分别沿△ABC的BA,BC边上运动,设其运动的时间为t秒,当其中一个点到达终点时,另一个点也随之停止运动,连结MN,将△BMN沿MN翻折,若点B恰好落在抛物线弧上的B′处,试求t的值及点B′的坐标;
(3)在(2)的条件下,Q为BN的中点,试探究坐标轴上是否存在点P,使得以B,Q,P为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,试说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】2022年将在北京﹣﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:
队员1
队员2
队员3
队员4
队员5
队员6
甲组
176
177
175
176
177
175
乙组
178
175
170
174
183
176
设两队队员身高的平均数依次为
甲 ,
乙 , 方差依次为S甲2 , S乙2 , 下列关系中正确的是( )
A.
甲=
乙 , S甲2<S乙2
B.
甲=
乙,S甲2>S乙2
C.
甲<
乙 , S甲2<S乙2
D.
甲>
乙 , S甲2>S乙2
相关试题