【题目】如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.
(1)求线段AD的长;
(2)求△ABC的周长.
![]()
参考答案:
【答案】(1)6;(2)
.
【解析】
(1)由AD⊥BC可得出∠ADB=90°,在Rt△ABD中,利用勾股定理即可求出AD的长;
(2)由AD⊥BC、∠ACD=45°可得出△ACD为等腰直角三角形,结合AD的长度可得出CD、AC的长度,再利用周长的定理即可求出△ABC的周长.
解:(1)∵AD⊥BC,
∴∠ADB=90°.
在Rt△ABD中,∠ADB=90°,AB=10,BD=8,
∴AD=
=6.
(2)∵AD⊥BC,∠ACD=45°,
∴△ACD为等腰直角三角形,
又∵AD=6,
∴CD=6,AC=6
,
∴C△ABC=AB+BD+CD+AC=24+6
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AE是高,AF是△ABC外角∠CAD的平分线.

(1)用尺规作图:作∠AEC的平分线EN(保留作图痕迹,不写作法和证明);
(2)设EN与AF交于点M,判断△AEM的形状,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.
(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?
(2)若丙想使球经过三次传递后,球落在自己手中的概率最大,丙会让球开始时在谁手中?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:关于x的一元二次方程tx2﹣(3t+2)x+2t+2=0(t>0)
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1 , x2(其中x1<x2),若y是关于t的函数,且y=x2﹣2x1 , 求这个函数的解析式,并画出函数图象;
(3)观察(2)中的函数图象,当y≥2t时,写出自变量t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点P为BC的中点,连接EP,AD.

(1)求证:PE是⊙O的切线;
(2)若⊙O的半径为3,∠B=30°,求P点到直线AD的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】下表是小华同学一个学期数学成绩的记录.根据表格提供的信息,回答下列的问题:
考试类别
平时考试
期中考试
期末考试
第一单元
第二单元
第三单元
第四单元
成绩(分)
85
78
90
91
90
94
(1)小明6次成绩的众数是 ,中位数是 ;
(2)求该同学这个同学这一学期平时成绩的平均数;
(3)总评成绩权重规定如下:平时成绩占20%,期中成绩占30%,期末成绩占50%,请计算出小华同学这一个学期的总评成绩是多少分?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:在Rt△ABC中,斜边AB=10,sinA=
,点P为边AB上一动点(不与A,B重合),PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.
(1)当AP=CP时,求QP;
(2)若四边形PMQN为菱形,求CQ;
(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?
相关试题