【题目】某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
(1)这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学.
![]()
![]()
参考答案:
【答案】(1)80人;(2)补图见解析;(3)780人.
【解析】试题分析:(1)由给的图象解题,根据自行车所占比例为30%,而频数分布直方图知一共有24人骑自行车上学,从而求出总人数;
(2)由扇形统计图知:步行占20%,而由(1)总人数已知,从而求出步行人数,补全频数分布直方图;
(3)自行车、步行、公交车、私家车、其他交通工具所占比例之和为100%,再由直方图具体人数来相减求解.
(1)设抽取了
名学生,由题意得
=30%,解得
=80
答:一共抽取了80名学生;
(2)步行人数=20%×80=16(名)
公交车人数=80-24-16-10-4=26(名)
![]()
(3)26×
=1040(名)
答:全校所有学生中有1040人乘坐公交车上学.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两公司同时销售一款进价为40元/千克的产品.图①中折线ABC表示甲公司销售价y1(元/千克)与销售量x(千克)之间的函数关系,图②中抛物线表示乙公司销售这款产品获得的利润y2(元)与销售量x(千克)之间的函数关系.

(1)分别求出图①中线段AB、图②中抛物线所表示的函数表达式;
(2)当该产品销售量为多少千克时,甲、乙两公司获得的利润的差最大?最大值为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】方程
﹣3=
的根,比关于x的方程2﹣
(a﹣x)=2x的根的2倍还多4.5,求关于x的方程a(x﹣5)﹣2=a(2x﹣3)的解. -
科目: 来源: 题型:
查看答案和解析>>【题目】某条公共汽车线路收支差额
与乘客量
的函数关系如图所示(收支差额
车票收入
支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )
④ ③ ② ①
A. ①反映了建议(Ⅰ),③反映了建议(Ⅱ) B. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)
C. ①反映了建议(Ⅱ),③反映了建议(Ⅰ) D. ②反映了建议(Ⅱ),④反映了建议(Ⅰ)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的有( )
①用两颗钉子就可以把木条固定在墙上
②把笔尖看成一个点,当这个点运动时便得到一条线;
③把弯曲的公路改直,就能缩短路程;
④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上。
A.
个B.
个C.
个D.
个 -
科目: 来源: 题型:
查看答案和解析>>【题目】小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.
(1).如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)
(2).如果有n个路口,则小明在每个路口都没有遇到红灯的概率是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC为等腰三角形,AB=AC
(1) 作BD⊥AC于D,若CD=2,BD=4,求AB的长度
(2) 若AB=2,E为BC延长线上一点,且AE=4.若BC∶CE=2∶3,判断△ABE的形状,并证明结论

相关试题