【题目】如图,以矩形ABCD的相邻边建立直角坐标系,AB=3,BC=5.点E是边CD上一点,将△ADE沿着AE翻折,点D恰好落在BC边上,记为F.
(1)求折痕AE所在直线的函数解析式______;
(2)若把翻折后的矩形沿y轴正半轴向上平移m个单位,连结OF,若△OAF是等腰三角形,则m的值是______,
![]()
参考答案:
【答案】y=-
x+3 3或2或
.
【解析】
(1)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=5,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线的解析式;
(2)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.
解:(1)∵四边形ABCD是矩形,
∴AD=CB=5,AB=DC=3,∠D=∠DCB=∠ABC=90°,
由折叠对称性:AF=AD=5,EF=DE,
在Rt△ABF中,BF=
=4,
∴CF=1,
设EC=x,则EF=3-x,
在Rt△ECF中,12+x2=(3-x)2,
解得:x=
,
∴E点坐标为:(5,
),
![]()
∴设AE所在直线解析式为:y=ax+b,
则
解得:
∴AE所在直线解析式为:y=
x+3;
故答案为:y=
x+3;
(2)分三种情况讨论:
若AO=AF=BC=5,
∴BO=AO-AB=2,
∴m=2;
若OF=FA,则AB=OB=3,
∴m=3,
若AO=OF,
在Rt△OBF中,AO2=OB2+BF2=m2+16,
∴(m+3)2=m2+16,
解得:m=
,
综上所述,若△OAF是等腰三角形,m的值为3或2或
.
故答案为:3或2或
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-
x+3与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m。
(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点、是否存在点P,使点E/落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)若∠EOD=30°,求CE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
为锐角,点
为直线
上一动点,以
为直角边且在
的右侧作等腰直角三角形
,
,
.
(1)如果
,
.①当点
在线段
上时,如图1,线段
、
的位置关系为___________,数量关系为_____________②当点
在线段
的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果
,
,点
在线段
上运动。探究:当
多少度时,
?小明通过(1)的探究,猜想
时,
.他想过点
做
的垂线,与
的延长线相交,构建图2的基本图案,寻找解决此问题的方法。小明的想法对吗?如不对写出你的结论;如对按此方法解决问题并写出理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】为积极响应市政府提出的“建设美丽南宁”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.
(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:
(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.
(3)在投稿篇数为9篇的四个班级中,八,九年级各有两个班,校学生会准备从这四个班中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.

-
科目: 来源: 题型:
查看答案和解析>>【题目】由于受猪流感的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的
,原来用60元买到的猪肉下调后可多买2斤.4月中旬,经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感.因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元.(1)求4月初猪肉价格下调后每斤多少元?
(2)求5、6月份猪肉价格的月平均增长率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=
.(1)求抛物线的解析式;
(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;
(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.

相关试题