【题目】已知四边形ABCD的对角线相交于O,给出下列 5个条件:①AB∥CD ;②AD∥BC;③AB=CD ;④∠BAD=∠BCD;⑤OA=OC.从以上5个条件中任选 2个条件为一组,能推出四边形ABCD为平行四边形的有( )
![]()
A. 4组 B. 5组 C. 6组 D. 7组
参考答案:
【答案】C
【解析】
有①与②,①与③,①与④,①与⑤,②与④,②与⑤,
①与②根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;
①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
①与④,②与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
①与⑤,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.
所以能推出四边形ABCD为平行四边形的有6组.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣
x﹣
与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.
(1)求点C,E的坐标及直线AB的解析式;
(2)设面积的和S=S△CDE+S四边形ABDO , 求S的值;
(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在矩形ABCD中,AB=4,AD=5,E为射线BC上一点,DF⊥AE于F,连结DE.

(1)当E在线段BC上时
①若DE=5,求BE的长;
②若CE=EF,求证:AD=AE;
(2)连结BF,在点E的运动过程中:
①当△ABF是以AB为底的等腰三角形时,求BE的长;
②记△ADF的面积为S1,记△DCE的面积为S2,当BF∥DE时,请直接写出S1:S2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A(
,y1)、B(2,y2)在反比例函数y=
的图像上,动点P(x,0)在x轴正半轴上运动,若AP-BP最大时,则点P的坐标是 ( )
A. (
,0) B. (
,0) C. (
,0) D. (1,0) -
科目: 来源: 题型:
查看答案和解析>>【题目】平面内,如图,在ABCD中,AB=10,AD=15,tanA=
,点P为AD边上任意点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.
(1)当∠DPQ=10°时,求∠APB的大小;
(2)当tan∠ABP:tanA=3:2时,求点Q与点B间的距离(结果保留根号);
(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积.(结果保留π) -
科目: 来源: 题型:
查看答案和解析>>【题目】现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′.则线段B′C= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.
月份n(月)
1
2
成本y(万元/件)
11
12
需求量x(件/月)
120
100
(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;
(2)求k,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.
相关试题