【题目】某运输部门规定:办理托运,当一种物品的重量不超过16千克时,需付基础费30元和保险费a元:为限制过重物品的托运,当一件物品超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x千克.
(1)当x≤16时,支付费用为__________________元(用含a的代数式表示);
当x≥16时,支付费用为_________________元(用含x和a、b的代数式表示);
(2)甲、乙两人各托运一件物品,物品重量和支付费用如下表所示
物品重量(千克) | 支付费用(元) |
18 | 39 |
25 | 53 |
试根据以上提供的信息确定a,b的值.
(3)根据这个规定,若丙要托运一件超过16千克的物品,但支付的费用不想超过70元,那么丙托运的物品最多是多少千克.
参考答案:
【答案】(1)30+a;30+a+b(x-16); (2)
;(3)最多33.5千克.
【解析】
解:(1)依题意知当某件物品之类x≤16时,支付费用30+a元;
当x≥16时,支付费用为30+a+b(x-16)元.
(2)由题意得![]()
解得,![]()
(3)设丙要托运的物品重x千克,
由题意得,![]()
解这个不等式得![]()
所以x的最大值是33.5
答:丙托运的物品最多33.5千克.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从八、九两个年级各随机抽取
名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级




















九年级




















整理、描述数据
按如下分数段整理、描述这两组样本数据:






八年级
0
0
1
11
1
九年级
1
0
0
7
(说明:成绩
分及以上为体质健康优秀,
~
分为体质健康良好,
~
分为体质健康合格,
分以下为体质健康不合格)分析数据
两组样本数据的平均数、中位数、众数、方差如下表所示:
年级
平均数
中位数
众数
方差
八年级



33.6
九年级


52.1
请将以上两个表格补充完整;
得出结论
(1)估计九年级体质健康优秀的学生人数为__________;
(2)可以推断出_______年级学生的体质健康情况更好一些,理由为_________________.(至少从两个不同的角度说明推断的合理性).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.
(1)求证:DB=DE;
(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连结CD.作∠CDE=30°,DE交AC于点E.

(1)当DE∥BC时,△ACD的形状按角分类是直角三角形;
(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED的度数;若不可以,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.
例如图
可以得到
,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式: .
(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,
= .(3) 小明同学用图 中x 张边长为a 的正方形, y张边长为b 的正方形,z 张宽、长分别为 a、b 的长方形纸片拼出一个面积为 (2a+b)(a+2b)长方形,则x+y+z=

【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为
的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
是⊙
的直径,弦
于点
,过点
的切线交
的延长线于点
,连接DF.(1)求证:DF是⊙
的切线; (2)连接
,若
=30°,
,求
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
和
中,
,还需再添加两个条件才能使
,则不能添加的一组条件是( )
A. AC=DE,∠C=∠EB. BD=AB,AC=DE
C. AB=DB,∠A=∠DD. ∠C=∠E,∠A=∠D
相关试题