【题目】定义,我们把对角线互相垂直的四边形叫做垂美四边形.
概念理解:如图②,在四边形ABCD中,如果AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.
性质探究:如图①,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.
问题解决:如图③,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE.若AC=2,AB=5,则①求证:△AGB≌△ACE;
②GE= .
![]()
参考答案:
【答案】(1)是;(2)AB2+CD2=BC2+AD2;(3)①证明见解析;②
.
【解析】
概念理解:根据垂直平分线的判定定理证明即可;
性质探究:根据垂直的定义和勾股定理解答即可;
问题解决:根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.
概念理解:四边形ABCD是垂美四边形.理由如下:
∵AB=AD,∴点A在线段BD的垂直平分线上.
∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;
性质探究:AD2+BC2=AB2+CD2.理由如下:
如图2,已知四边形ABCD中,AC⊥BD,垂足为E.
∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;
问题解决:①连接CG、BE,如图3所示:
∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE.
在△GAB和△CAE中,∵AG=AC,∠GAB=∠CAE,AB=AE,∴△AGB≌△ACE(SAS);
②∵△AGB≌△ACE,∴∠ABG=∠AEC.
又∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得:CG2+BE2=CB2+GE2.
∵AC=2,AB=5,∴BC=
,CG=2
,BE=5
,∴GE2=CG2+BE2﹣CB2=37,∴GE=
.
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1 , 直线CD的表达式为y2=k2x+b2 , 则k1k2= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】为调查市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭轿车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成不完整的条形统计图(图1)和扇形统计图(图2),请结合统计图回答下列问题:
(1)在这次调查中,一共调查了 名市民;
(2)扇形统计图中,C组的百分率是 ;并补全条形统计图;
(3)计算四市中10000名市民上班时最常用家庭轿车的有多少?


-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,Rt△ABC中,∠C=90°,BC=6,AC=8.动点P从点A出发沿A—B—C的方向以每秒2个单位的速度运动.设P的运动时间为t(秒).
(1)请直接用含t的代数式表示①当点P在AB上时,BP= ;②当点P在BC上时,BP= ;
(2)求△BPC为等腰三角形的t值.

(备用图) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为
的等腰直角三角形DEF的费马点,则PD+PE+PF= . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )

A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
-
科目: 来源: 题型:
查看答案和解析>>【题目】某社区从2011年开始,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参加项目活动总人数进行统计,并绘制成每年参加总人数折线统计图和2015年各活动项目参与人数的扇形统计图,请你根据统计图解答下列题

(1)2015年比2011年增加人;
(2)请根据扇形统计图求出2015年参与跑步项目的人数;
(3)组织者预计2016年参与人员人数将比2015年的人数增加15%,名各活动项目参与人数的百分比与2016年相同,请根据以上统计结果,估计2016年参加太极拳的人数.
相关试题